CS395T: Continuous Algorithms, Part XI Low-rank approximation

Kevin Tian

1 Principal component analysis

In this lecture, we introduce the topic of *low-rank approximation*. Broadly speaking, the goal of low-rank approximation is to approximate a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, potentially of rank as large as $\min(n, d)$, as well as possible with a matrix $\widetilde{\mathbf{A}}$ of much smaller rank.

Because of the Eckart-Young-Mirsky theorem (Theorem 1), this is often conflated with the goal of *principal component analysis*. In order to state this result, we first require the following definition:

$$\mathcal{U}_k := \left\{ \mathbf{U} \in \mathbb{R}^{d \times k} \mid \mathbf{U}^\top \mathbf{U} = \mathbf{I}_k \right\}.$$
(1)

In other words, \mathcal{U}_k is the set of $d \times k$ matrices with orthonormal columns. We can now define the k-principal component analysis (k-PCA) problem, which asks to return $\mathbf{V} \in \mathcal{U}_k$ satisfying

$$\langle \mathbf{V}\mathbf{V}^{\top}, \mathbf{M} \rangle = \max_{\mathbf{U} \in \mathcal{U}_k} \langle \mathbf{U}\mathbf{U}^{\top}, \mathbf{M} \rangle,$$
 (2)

where $\mathbf{M} \in \mathbb{S}^{d \times d}_{\succeq \mathbf{0}}$. It is a well-known fact in numerical linear algebra that the optimal solution to (2) is a basis for any eigenspace corresponding to the k largest eigenvalues of \mathbf{M} .

Lemma 1. Let $\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top} = \sum_{i \in [d]} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$ be the eigendecomposition of $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$, where the $\{\lambda_i\}_{i \in [d]}$ are nonincreasing, let $[m] \subseteq [d]$ correspond to indices $i \in [d]$ where $\lambda_i \geq \lambda_k$, and let $[\ell] \subseteq [m]$ correspond to indices $i \in [d]$ where $\lambda_i > \lambda_k$. Then $\mathbf{V} \in \mathcal{U}_k$ solves (2) optimally iff

$$\operatorname{Span}\left(\left\{\mathbf{u}_{i}\right\}_{i\in\left[\ell\right]}\right)\subseteq\operatorname{Span}\left(\mathbf{V}\right)\subseteq\operatorname{Span}\left(\left\{\mathbf{u}_{i}\right\}_{i\in\left[m\right]}\right).$$
(3)

Proof. First, the von Neumann trace inequality (Theorem 6, Part VI) shows that

$$\max_{\mathbf{U}\in\mathcal{U}_k}ig\langle \mathbf{U}\mathbf{U}^ op,\mathbf{M}ig
angle\leq\sum_{i\in[k]}oldsymbol{\lambda}_i,$$

since $\mathbf{U}\mathbf{U}^{\top}$ has exactly k eigenvalues equal to 1, and the rest are 0. Moreover, examining the proof of Theorem 6, Part V implies that if we let $\{\mathbf{v}_i\}_{i\in[k]}$ denote the columns of \mathbf{V} , then the extremal value above is attained iff $|\langle \mathbf{u}_{\sigma(i)}, \mathbf{v}_i \rangle| = 1$ for all $i \in [k]$ and a permutation $\sigma : [d] \to [d]$ such that $\{\lambda_{\sigma(i)}\}_{i\in[k]}$ has the same sum as $\{\lambda_i\}_{i\in[k]}$, which is equivalent to the condition (3).

Lemma 1 shows that solving (2) is computationally tractable (i.e., performable in polynomial time via eigendecomposition) for any $k \in [d]$. This is perhaps somewhat surprising, given that even the k = 1 case of (2) asks to maximize a convex function (i.e., $\mathbf{u}^{\top}\mathbf{M}\mathbf{u}$ for $\|\mathbf{u}\|_2 \leq 1$) over a convex set, which is a nonconvex optimization (indeed, a concave minimization) problem.

In fact, the following theorem due to Eckart-Young and Mirsky [EY36, Mir60], as alluded to earlier, shows that optimally performing k-PCA simultaneously solves a broad range of low-rank approximation problems beyond the quadratic form maximization problem in (2).

Theorem 1 (Eckart-Young-Mirsky). Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \ge d$, and let $\|\cdot\|$ be a unitarily-invariant norm.¹ Then letting $\mathbf{V} \in \mathcal{U}_k$ attain the maximum value in (2) for $\mathbf{M} := \mathbf{A}^\top \mathbf{A}$, we have

$$\left\|\mathbf{A} - \mathbf{A}\mathbf{V}\mathbf{V}^{\top}\right\| \leq \left\|\mathbf{A} - \widetilde{\mathbf{A}}\right\|, \text{ for all rank-k } \widetilde{\mathbf{A}} \in \mathbb{R}^{n \times d}.$$
(4)

 $^{^1\}mathrm{We}$ defined unitarily-invariant norms in Part VI, Section 2.2.

Proof. We only prove the cases where $\|\cdot\| = \|\cdot\|_{\text{op}}$ and $\|\cdot\| = \|\cdot\|_{\text{F}}$ here, deferring a proof of the general case to [Mir60], which draws upon some of the analysis tools from Part VI.

Let $\mathbf{U}\Sigma\mathbf{V}^{\top}$ be the singular value decomposition of \mathbf{A} (Corollary 3, Part VI), where $\Sigma = \operatorname{diag}(\sigma)$ and we assume σ is in nonincreasing order. Moreover, let the columns of \mathbf{U} be denoted $\{\mathbf{u}_i\}_{i\in[d]} \subset \mathbb{R}^n$, and similarly let $\{\mathbf{v}_i\}_{i\in[d]} \subset \mathbb{R}^d$ be the columns of \mathbf{V} . Observe that

$$\mathbf{M} = \mathbf{A}^{\top} \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}, \text{ where } \mathbf{\Lambda} = \mathbf{\Sigma}^2.$$

Thus, by Lemma 1, the optimal solution to (2) is given by the first k columns of V, corresponding to the k largest singular values of A (breaking ties arbitrarily). Thus, our goal is to prove that

$$\mathbf{A}\left(\sum_{i\in[k]}\mathbf{v}_i\mathbf{v}_i^{\top}\right) = \left(\sum_{j\in[d]}\boldsymbol{\sigma}_j\mathbf{u}_j\mathbf{v}_j^{\top}\right)\left(\sum_{i\in[k]}\mathbf{v}_i\mathbf{v}_i^{\top}\right) = \sum_{i\in[k]}\boldsymbol{\sigma}_i\mathbf{u}_i\mathbf{v}_i^{\top}$$

is the optimal low-rank approximation to **A** in the sense of (4), when $\|\cdot\| \in \{\|\cdot\|_{op}, \|\cdot\|_{F}\}$.

For the operator norm, we proceed as follows. Let $\widetilde{\mathbf{A}} = \mathbf{X}\mathbf{Y}^{\top}$ be rank-k, with $\mathbf{X} \in \mathbb{R}^{n \times k}$ and $\mathbf{Y} \in \mathbb{R}^{d \times k}$. Let $\mathbf{V}_{[k+1]:}$ denote the first k+1 columns of \mathbf{V} . Because $\text{Span}(\mathbf{Y})$ is k-dimensional, there must be some $\mathbf{v} \in \mathbb{R}^d$ in $\text{Span}(\mathbf{V}_{[k+1]:})$ such that $\mathbf{Y}^{\top}\mathbf{v} = \mathbf{0}_k$. Without loss of generality, let $\|\mathbf{v}\|_2 = 1$, so that by orthonormality of the columns of \mathbf{V} , $\mathbf{v} = \mathbf{V}_{[k+1]:}\mathbf{w}$ where $\|\mathbf{w}\|_2 = 1$. Then,

$$\begin{split} \left\| \mathbf{A} - \widetilde{\mathbf{A}} \right\|_{\text{op}} &\geq \left\| \left(\mathbf{A} - \widetilde{\mathbf{A}} \right) \mathbf{v} \right\|_{2} = \| \mathbf{A} \mathbf{v} \|_{2} \\ &= \left\| \mathbf{A} \mathbf{V}_{[k+1]:} \mathbf{w} \right\|_{2} = \left\| \sum_{i \in [k+1]} \boldsymbol{\sigma}_{i} \mathbf{w}_{i} \mathbf{u}_{i} \right\|_{2} = \sqrt{\sum_{i \in [k+1]} \boldsymbol{\sigma}_{i}^{2} \mathbf{w}_{i}^{2}} \geq \boldsymbol{\sigma}_{k+1}, \end{split}$$

where the minimal value in the last inequality is achieved by **w** with all its mass on the $(k + 1)^{\text{th}}$ coordinate. Finally, observe that $\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\text{op}} = \boldsymbol{\sigma}_{k+1}$ is achieved by $\widetilde{\mathbf{A}} = \sum_{i \in [k]} \boldsymbol{\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\top}$.

For the Frobenius norm, again let $\widetilde{\mathbf{A}} \in \mathbb{R}^{n \times d}$ be any rank-k matrix. Then for all $i \geq 1$,

$$egin{aligned} oldsymbol{\sigma}_{i}\left(\mathbf{A}-\widetilde{\mathbf{A}}
ight)&=oldsymbol{\sigma}_{i}\left(\mathbf{A}-\widetilde{\mathbf{A}}
ight)+oldsymbol{\sigma}_{k+1}\left(\widetilde{\mathbf{A}}
ight)\ &=oldsymbol{\sigma}_{1}\left(\mathbf{A}-\widetilde{\mathbf{A}}-\mathbf{B}
ight)+oldsymbol{\sigma}_{1}\left(\widetilde{\mathbf{A}}-\widetilde{\mathbf{A}}
ight)\ &\geqoldsymbol{\sigma}_{1}\left(\mathbf{A}-\left(\widetilde{\mathbf{A}}+\mathbf{B}
ight)
ight)&\geqoldsymbol{\sigma}_{i+k}\left(\mathbf{A}
ight), \end{aligned}$$

for some rank- $(i-1) \mathbf{B} \in \mathbb{R}^{n \times d}$, where the first inequality used that $\boldsymbol{\sigma}_1$ is the operator norm (which obeys the triangle inequality), and the second inequality used our earlier characterization of the operator norm and the fact that $\tilde{\mathbf{A}} + \mathbf{B}$ is rank-(k + i - 1). Hence,

$$\left\|\mathbf{A} - \widetilde{\mathbf{A}}\right\|_{\mathrm{F}}^{2} \geq \sum_{i \in [d-k]} \boldsymbol{\sigma}_{i} \left(\mathbf{A} - \widetilde{\mathbf{A}}\right)^{2} \geq \sum_{i=k+1}^{d} \boldsymbol{\sigma}_{i}(\mathbf{A})^{2}.$$

It is straightforward to verify that equality is achieved above by taking $\widetilde{\mathbf{A}} = \sum_{i \in [k]} \boldsymbol{\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\top}$. \Box

Theorem 1 shows that developing algorithms for computing low-rank approximations to possibly asymmetric $\mathbf{A} \in \mathbb{R}^{n \times d}$ in any unitarily-invariant norm reduces to efficiently performing k-PCA on a PSD matrix (i.e., $\mathbf{M} = \mathbf{A}^{\top} \mathbf{A}$). The rest of these notes focus on this latter task. In fact, we primarily focus on the k = 1 case for simplicity. However, throughout we will discuss how our methods extend to the case of general k, and indeed, the focus of Section 5 is how to use approximate 1-PCA algorithms in a black-box fashion to approximate k-PCA as well.

In the rest of these notes, **M** will always be a target matrix in $\mathbb{S}^{d \times d}_{\succeq \mathbf{0}}$ that we wish to perform PCA on. We denote its eigendecomposition (breaking ties arbitrarily) by

$$\mathbf{M} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top} = \sum_{i \in [d]} \boldsymbol{\lambda}_i \mathbf{u}_i \mathbf{u}_i^{\top}, \text{ where } \boldsymbol{\lambda} \text{ has nonincreasing coordinates.}$$
(5)

2 Krylov methods

In this section, we focus on algorithms for computing an approximate 1-PCA to $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$, which only access \mathbf{M} through matrix-vector products. This access model is interesting for several reasons. First, it is well-motivated in applications where \mathbf{M} is *implicit*. For example, if we are targetting low-rank approximations to $\mathbf{A} \in \mathbb{R}^{n \times d}$, the cost of actually computing $\mathbf{M} = \mathbf{A}^{\top} \mathbf{A}$ scales as $nd^{\omega-1}$ in theory and nd^2 in practice (cf. discussion in Remark 1, Part IX). However, we can simulate matrix-vector queries with \mathbf{M} via two multiplications through \mathbf{A} , requiring just $O(\operatorname{nnz}(\mathbf{A}))$ time. More generally, when \mathbf{M} is a small power or otherwise simple function of a matrix, explicitly forming \mathbf{M} can be significantly more expensive than matrix-vector products. Finally, given the restricted nature of matrix-vector products, it is often possible to establish strong lower bounds on the performance of algorithms in this query model [BCW22, BN23].

We begin by describing the *power method*, perhaps the most famous algorithm for approximate 1-PCA (which, as seen in Lemma 1, is equivalent to top eigenvector computation).

Theorem 2 (Power method, gapped variant). Let $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$ have eigendecomposition (5), and suppose for some $\Gamma \in (0, 1)$, it is the case that $\lambda_2 \leq (1 - \Gamma)\lambda_1$. Further, let $\delta, \Delta \in (0, 1)$, and $p \geq \frac{8}{\Gamma} \log(\frac{32d}{\delta\Delta})$. Then, with probability $\geq 1 - \delta$, we have that $\langle \hat{\mathbf{u}}, \mathbf{u}_1 \rangle^2 \geq 1 - \Delta$,² where

$$\hat{\mathbf{u}} := \frac{\mathbf{M}^p \mathbf{g}}{\|\mathbf{M}^p \mathbf{g}\|_2} \text{ for } \mathbf{g} \sim \mathcal{N}\left(\mathbf{0}_d, \mathbf{I}_d\right).$$

Proof. For all $i \in [d]$, $\langle \mathbf{g}, \mathbf{u}_i \rangle$ is an independently-distributed random variable $\sim \mathcal{N}(0, 1)$.³ Each random variable is 1-sub-Gaussian, so with probability $\geq 1 - \frac{\delta}{2}$, Theorem 1, Part VI shows

$$|\langle \mathbf{g}, \mathbf{u}_i \rangle| \le \sqrt{2 \log\left(\frac{2d}{\delta}\right)}, \text{ for all } i \in [d].$$

Moreover, we can directly show that with probability $\geq 1 - \frac{\delta}{2}$, $|\langle \mathbf{g}, \mathbf{u}_1 \rangle| \geq \frac{\delta}{4}$: indeed for any r > 0,

$$\Pr_{Z \sim \mathcal{N}(0,1)} \left[Z \in \left[-r, r \right] \right] = \frac{1}{\sqrt{2\pi}} \int_{-r}^{r} \exp\left(-\frac{s^2}{2}\right) \mathrm{d}s \le \int_{-r}^{r} \mathrm{d}s \le 2r$$

Thus, union bounding on the above two events, we have that with probability $\geq 1 - \delta$,

$$\frac{\langle \mathbf{g}, \mathbf{u}_i \rangle^2}{\langle \mathbf{g}, \mathbf{u}_1 \rangle^2} \le \frac{32 \log\left(\frac{d}{\delta}\right)}{\delta^2} =: R, \text{ for all } 2 \le i \le d.$$
(6)

Condition on (6) in the remainder of the proof. Now, let $\mathbf{P} := \mathbf{M}^p$ and observe that $\lambda_1(\mathbf{P}) = \lambda_1^p \ge (1 + \Gamma)^p \lambda_2^p \ge \frac{dR}{\Delta} \lambda_2(\mathbf{P})$ for our choice of p. Thus, we have

$$\begin{split} \|\mathbf{Pg}\|_{2}^{2} &= \sum_{i \in [d]} \left\langle \mathbf{Pg}, \mathbf{u}_{i} \right\rangle^{2} = \sum_{i \in [d]} \boldsymbol{\lambda}_{i}^{p} \left\langle \mathbf{g}, \mathbf{u}_{i} \right\rangle^{2} \\ &= \boldsymbol{\lambda}_{1}^{p} \left\langle \mathbf{g}, \mathbf{u}_{1} \right\rangle^{2} \left(1 + \sum_{i=2}^{d} \left(\frac{\boldsymbol{\lambda}_{i}^{p}}{\boldsymbol{\lambda}_{1}^{p}} \right) \left(\frac{\left\langle \mathbf{g}, \mathbf{u}_{i} \right\rangle^{2}}{\left\langle \mathbf{g}, \mathbf{u}_{1} \right\rangle^{2}} \right) \right) \\ &\leq \boldsymbol{\lambda}_{1}^{p} \left\langle \mathbf{g}, \mathbf{u}_{1} \right\rangle^{2} \left(1 + dR \cdot \frac{\Delta}{dR} \right) = (1 + \Delta) \boldsymbol{\lambda}_{1}^{p} \left\langle \mathbf{g}, \mathbf{u}_{1} \right\rangle^{2} \end{split}$$

Finally, the desired claim follows from

$$\langle \hat{\mathbf{u}}, \mathbf{u}_1 \rangle^2 = \frac{\langle \mathbf{Pg}, \mathbf{u}_1 \rangle^2}{\|\mathbf{Pg}\|_2^2} = \frac{\boldsymbol{\lambda}_1^p \langle \mathbf{g}, \mathbf{u}_1 \rangle^2}{\|\mathbf{Pg}\|_2^2} \ge \frac{1}{1+\Delta} \ge 1-\Delta.$$

²In this context, it is more reasonable to track the squared quantity than $\langle \hat{\mathbf{u}}, \mathbf{u}_1 \rangle$ directly, because $-\mathbf{u}_1$ is also a top eigenvector of \mathbf{M} , so we should accept either as a 1-PCA solution.

³This is clear when $\{\mathbf{u}_i\}_{i \in [d]}$ is the standard basis vectors $\{\mathbf{e}_i\}_{i \in [d]}$; the general case follows by rotational invariance of the Gaussian density (alternatively, direct computation on the PDF of multivariate Gaussians).

Theorem 1 has a simple and intuitive message. Assuming the existence of a gap in the spectrum of \mathbf{M} , i.e., that \mathbf{u}_1 is "obviously" the top eigenvector by at least a factor of $1 - \Gamma$, we can amplify this gap by powering up the matrix \mathbf{M} into $\mathbf{P} = \mathbf{M}^p$. In particular, \mathbf{P} has the same eigenvectors as \mathbf{M} , but has a much larger gap, which is enough to outweigh differences in the initial random correlations between $\mathbf{g} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$ and the eigenvectors $\{\mathbf{u}_i\}_{i \in [d]}$.

One could also ask: how does the power method perform when there is no gap in the $\{\lambda_i\}_{i \in [d]}$? In this case, a goal such as $\langle \hat{\mathbf{u}}, \mathbf{u}_1 \rangle^2 \geq 1 - \Delta$ (as in Theorem 1) may not even be well-posed. For example, if $\lambda_1 = \lambda_2$, then either $\hat{\mathbf{u}} = \mathbf{u}_1$ or $\hat{\mathbf{u}} = \mathbf{u}_2$ perfectly solves 1-PCA, but these vectors are orthogonal. Nonetheless, one could hope for the output $\hat{\mathbf{u}}$ to at least lie in the span of the "good candidates" for an approximate top eigenvector, dodging the orthogonal small eigenspace. This motivates our next definition for approximate PCA in the gap-free setting.

Definition 1 (Correlation 1-PCA). Let $\mathbf{M} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}$ have eigendecomposition (5), and let $\Gamma, \Delta \in (0,1)$. Further, let $\ell \in [d]$ satisfy $\lambda_{\ell} > (1-\Gamma)\lambda_1 \ge \lambda_{\ell+1}$. We say that $\hat{\mathbf{u}} \in \mathcal{U}_1$ is a (Γ, Δ) -approximate correlation-1-PCA (or, (Γ, Δ) -1-cPCA) of \mathbf{M} if

$$\sum_{i \in [\ell]} \left\langle \hat{\mathbf{u}}, \mathbf{u}_i \right\rangle^2 \ge 1 - \Delta$$

Intuitively, the notion of approximation in Definition 1 penalizes any mass that $\hat{\mathbf{u}}$ puts outside the "large eigenvectors" $\lambda_1, \ldots, \lambda_\ell$, but allows $\hat{\mathbf{u}}$ to vary arbitrarily within their span. This is a suitable generalization in the gap-free setting, treating eigenvectors that stay above the gap as equally-acceptable solutions. As $(\Gamma, \Delta) \to (0, 0)$, we recover that $\hat{\mathbf{u}}$ must become a top eigenvector of **M**. With this definition in hand, we give an analog to Theorem 1 in the gap-free setting.

Theorem 3 (Power method, gap-free variant). Let $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$ have eigendecomposition (5), let $\delta, \Delta, \Gamma \in (0, 1)$, and $p \geq \frac{8}{\Gamma} \log(\frac{32d}{\delta\Delta})$. Then, with probability $\geq 1 - \delta$, we have that $\hat{\mathbf{u}}$ is a (Γ, Δ) -1cPCA of \mathbf{M} , where

$$\hat{\mathbf{u}} := rac{\mathbf{M}^{p}\mathbf{g}}{\left\|\mathbf{M}^{p}\mathbf{g}\right\|_{2}} \ \textit{for } \mathbf{g} \sim \mathcal{N}\left(\mathbf{0}_{d}, \mathbf{I}_{d}
ight).$$

Proof. Throughout this proof, we follow notation in Definition 1, and further, we condition on (6) holding, which gives the failure probability. Let

$$L := \sum_{i \in [\ell]} \langle \hat{\mathbf{u}}, \mathbf{u}_i \rangle^2, \ S := \sum_{i=\ell+1}^d \langle \hat{\mathbf{u}}, \mathbf{u}_i \rangle^2$$

be the correlations of $\hat{\mathbf{u}}$ with the large and small eigenspaces of \mathbf{M} , respectively. As in the proof of Theorem 1, under (6), we have that for $\mathbf{P} = \mathbf{M}^p$,

$$\sum_{i=\ell+1}^{d} \left\langle \mathbf{P}\mathbf{g}, \mathbf{u}_i
ight
angle^2 = oldsymbol{\lambda}_1^p \left\langle \mathbf{g}, \mathbf{u}_1
ight
angle^2 \left(\sum_{i=\ell+1}^{d} \left(rac{oldsymbol{\lambda}_i^p}{oldsymbol{\lambda}_1^p}
ight) \left(rac{\left\langle \mathbf{g}, \mathbf{u}_i
ight
angle^2}{\left\langle \mathbf{g}, \mathbf{u}_1
ight
angle^2}
ight)
ight) \leq \Delta oldsymbol{\lambda}_1^p \left\langle \mathbf{g}, \mathbf{u}_1
ight
angle^2$$

Thus, because $\hat{\mathbf{u}} \propto \mathbf{M}^p \mathbf{g}$ up to a common normalization factor,

$$\frac{L}{S} \geq \frac{\langle \hat{\mathbf{u}}, \mathbf{u}_1 \rangle^2}{S} = \frac{\langle \mathbf{Pg}, \mathbf{u}_1 \rangle^2}{\sum_{i=\ell+1}^d \langle \mathbf{Pg}, \mathbf{u}_i \rangle^2} \geq \frac{1}{\Delta}$$

Finally, because $L + S = \|\mathbf{Pg}\|_2^2$, we have the desired

$$\sum_{i \in [\ell]} \langle \hat{\mathbf{u}}, \mathbf{u}_i \rangle^2 = \frac{L}{L+S} \ge \frac{1}{1+\Delta} \ge 1-\Delta.$$

The runtime of Theorem 3 is dominated by $p \approx \frac{1}{\Gamma}$ matrix-vector multiplications through **M**. As alluded to in Section 1.2, Part VII, we can improve upon this runtime by using low-degree polynomial approximations to \mathbf{M}^p . This can be done explicitly (by directly applying the polynomial), or implicitly (via the Lanczos method, i.e., Theorem 1, Part VII).

Corollary 1. In the setting of Theorem 3, let $p \geq \frac{8}{\Gamma} \log(\frac{64d}{\delta\Delta})$. There is an algorithm that uses

$$m = \sqrt{2p \log\left(\frac{96}{\delta\Delta}\right)} = O\left(\frac{1}{\sqrt{\Gamma}} \log\left(\frac{d}{\delta\Delta}\right)\right)$$

matrix-vector multiplications through **M** and $O(m^2)$ additional time, and with probability $\geq 1 - \delta$, returns $\hat{\mathbf{u}}$ that is a (Γ, Δ) -1-cPCA of **M**.

Proof. We give a proof suppressing dependence on the ϵ parameter in Theorem 1, Part VII, and assuming that the error bound is $2\delta_k$ (as in the exact arithmetic setting of Section 5, Part VII), rather than $O(k \cdot \delta_k + \epsilon)$. These parts of the theorem statement are used to handle issues arising from working in finite-precision arithmetic; we defer the full proof to Theorem 18, [MMS18].

Recall from Lemma 1, Part VII, that there is a polynomial q of degree m satisfying

$$\sup_{x \in [-1,1]} |q(x) - x^p| \le 2 \exp\left(-\frac{m^2}{2p}\right) \le \frac{\delta\Delta}{48}$$

Thus, letting $r(x) := \lambda_1^p q(\frac{x}{\lambda_1})$, we have

$$\sup_{x \in [0,\lambda_1]} |r(x) - x^p| \le \frac{\delta \Delta}{48} \lambda_1^p.$$
(7)

Next, for notational simplicity, let $\mathbf{n} := \mathbf{M}^p \mathbf{g}$ and $D := \|\mathbf{n}\|_2$, so that the output of Theorem 3 is $\frac{\mathbf{n}}{D}$. From the proof of Theorem 2, except with probability δ , we have that

$$D \ge |\langle \mathbf{Pg}, \mathbf{u}_1 \rangle| = \boldsymbol{\lambda}_1^p \, |\langle \mathbf{g}, \mathbf{u}_1 \rangle| \ge \frac{\delta \boldsymbol{\lambda}_1^p}{4}. \tag{8}$$

Now, let $\tilde{\mathbf{n}}$ be the output of the Lanczos method (Theorem 1, Part VII) with $k \leftarrow m$, $\mathbf{A} \leftarrow \mathbf{M}$, and $f(x) \leftarrow x^p$. By combining (7) and (8),

$$\|\tilde{\mathbf{n}} - \mathbf{n}\|_2 = \|\tilde{\mathbf{n}} - \mathbf{M}^p \mathbf{g}\|_2 \le \frac{\delta \Delta}{24} \boldsymbol{\lambda}_1^p \le \frac{\Delta D}{6}$$

Therefore, letting $\widetilde{D} := \|\widetilde{\mathbf{n}}\|_2$, and $\widehat{\mathbf{u}} := \frac{\widetilde{\mathbf{n}}}{\widetilde{D}}$ be our output vector,

$$\left\|\frac{\mathbf{n}}{D} - \frac{\tilde{\mathbf{n}}}{\widetilde{D}}\right\|_{2} \le \frac{1}{D} \left\|\mathbf{n} - \tilde{\mathbf{n}}\right\|_{2} + \left|\frac{1}{D} - \frac{1}{\widetilde{D}}\right| \left\|\tilde{\mathbf{n}}\right\|_{2} \le \frac{\Delta}{6} + \frac{\frac{\Delta}{6}(1 + \frac{\Delta}{6})}{1 - \frac{\Delta}{6}} \le \frac{\Delta}{2}$$

Finally, let $\mathbf{\Pi} := \sum_{i=\ell+1}^{d} \mathbf{u}_i \mathbf{u}_i^{\top}$ be the projection matrix onto the small eigenspace of \mathbf{M} , as in Definition 1. Theorem 3 with our choice of p implies $\|\mathbf{\Pi}(\frac{\mathbf{n}}{D})\|_2 \leq \frac{\Delta}{2}$, so we have the desired claim:

$$\|\mathbf{\Pi}\hat{\mathbf{u}}\|_{2} \leq \left\|\mathbf{\Pi}\left(\hat{\mathbf{u}} - \frac{\mathbf{n}}{D}\right)\right\|_{2} + \left\|\mathbf{\Pi}\left(\frac{\mathbf{n}}{D}\right)\right\|_{2} \leq \left\|\hat{\mathbf{u}} - \frac{\mathbf{n}}{D}\right\|_{2} + \frac{\Delta}{2} \leq \Delta.$$

Up to low-order terms, Corollary 1 improves upon Theorem 3's runtime by a $\approx \Gamma^{-1/2}$ factor. These Krylov method-based algorithms admit various extensions: for example, they generalize to approximate k-PCA for k > 1 [MM15, AZL16], the low-order poly(m) additive runtime terms can be removed [AZL16], and even the leading-order term of $\approx \mathcal{T}_{mv}(\mathbf{M}) \cdot \text{poly}(\frac{1}{\Gamma})$ can be improved (as discussed in Section 4). The first of these extensions, i.e., the generalization to k-PCA, is fairly straightforward to obtain by slightly modifying the proofs of Theorems 2 and 3, and Corollary 1.

There has been recent work studying the optimality of Krylov methods for PCA and low-rank approximation. A particularly surprising result [BCW22] shows that Frobenius norm low-rank approximation, i.e., producing a rank-k projection matrix $\widehat{\mathbf{\Pi}} \in \mathbb{S}_{\succ \mathbf{0}}^{d \times d}$ such that

$$\left\| \mathbf{A} - \mathbf{A} \widehat{\mathbf{\Pi}} \right\|_{\mathrm{F}} \le (1+\epsilon) \min_{\substack{\mathbf{\Pi} \in \mathbb{S}_{\ge 0}^{d \times d} \\ \operatorname{rank}(\mathbf{\Pi}) = k \\ \boldsymbol{\lambda}(\mathbf{\Pi}) \in \{0,1\}^{d}}} \left\| \mathbf{A} - \mathbf{A} \mathbf{\Pi} \right\|_{\mathrm{F}},$$
(9)

is achievable using only $\approx \epsilon^{-1/3}$ matrix-vector products. This improves upon direct applications of the Lanczos method (e.g., Corollary 1), which as shown in [MM15] use $\approx \epsilon^{-1/2}$ matrix-vector products to achieve a guarantee such as (9). For k = 1, [BN23] demonstrated that $\approx \epsilon^{-1/3}$ is the optimal matrix-vector query complexity for low-rank approximation in $\|\cdot\|_{\rm F}$, and $\approx \epsilon^{-1/2}$ is optimal in $\|\cdot\|_{\rm op}$; however, characterizing the landscape for general k remains open.

3 Notions of approximation

Definition 1 is not the only notion of approximate PCA commonly seen in the literature. In this section, we introduce another standard definition, and compare it to Definition 1.

Definition 2 (Energy 1-PCA). Let $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$ have eigendecomposition (5), and let $\epsilon \in (0, 1)$. We say that $\hat{\mathbf{u}}$ is an ϵ -approximate energy-1-PCA (or, ϵ -1-ePCA) of \mathbf{M} if $\hat{\mathbf{u}} \in \mathcal{U}_1$, and

$$\hat{\mathbf{u}}^{\top} \mathbf{M} \hat{\mathbf{u}} \ge (1 - \epsilon) \max_{\mathbf{u} \in \mathcal{U}_1} \mathbf{u}^{\top} \mathbf{M} \mathbf{u} = (1 - \epsilon) \boldsymbol{\lambda}_1$$

Definition 2 is somewhat more straightforward than Definition 1; it simply requires that $\hat{\mathbf{u}}$ approximately solves the optimization problem (2) when k = 1, agnostic to the presence of a gap in $\boldsymbol{\lambda}$. Recall that in the exact case $\epsilon = 0$, we have by Lemma 1 that $\hat{\mathbf{u}}$ is a top eigenvector of \mathbf{M} . Moreover, guarantees for Definition 1 transfer to those for Definition 2 (and vice versa).

Lemma 2. If $\hat{\mathbf{u}}$ is an ϵ -1-ePCA of $\mathbf{M} \in \mathbb{S}^{d \times d}_{\succeq \mathbf{0}}$, it is a $(\Gamma, \frac{\epsilon}{\Gamma})$ -1-cPCA of \mathbf{M} for any $\Gamma \in (0, 1)$.

Proof. Following the notation in (5) and Definition 1, let $\mathbf{L} \in \mathbb{R}^{d \times \ell}$ consist of the first ℓ columns of \mathbf{U} (i.e., the ℓ largest eigenvectors), and $\mathbf{S} \in \mathbb{R}^{d \times (d-\ell)}$ consist of the remaining columns. Further, let $\Delta := \|\mathbf{S}^{\top} \hat{\mathbf{u}}\|_2^2$, so the claim is $\Delta \leq \frac{\epsilon}{\Gamma}$. By the matrix Hölder inequality (Eq. (12), Part VI),

$$\begin{aligned} (1-\epsilon)\boldsymbol{\lambda}_{1} &\leq \hat{\mathbf{u}}^{\top}\mathbf{M}\hat{\mathbf{u}} = \left\langle \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}, \mathbf{L}\mathbf{L}^{\top}\mathbf{M}\mathbf{L}\mathbf{L}^{\top} \right\rangle + \left\langle \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}, \mathbf{S}\mathbf{S}^{\top}\mathbf{M}\mathbf{S}\mathbf{S}^{\top} \right\rangle \\ &\leq \left\|\mathbf{L}^{\top}\hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}\mathbf{L}\right\|_{\mathrm{tr}} \left\|\mathbf{S}^{\top}\mathbf{M}\mathbf{S}\right\|_{\mathrm{op}} + \left\|\mathbf{S}^{\top}\hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}\mathbf{S}\right\|_{\mathrm{tr}} \left\|\mathbf{S}^{\top}\mathbf{M}\mathbf{S}\right\|_{\mathrm{op}} \\ &\leq (1-\Delta)\boldsymbol{\lambda}_{1} + \Delta(1-\Gamma)\boldsymbol{\lambda}_{1} = (1-\Delta\Gamma)\boldsymbol{\lambda}_{1}. \end{aligned}$$

The conclusion follows by rearranging and solving for Δ .

Lemma 3. If $\hat{\mathbf{u}}$ is a (Γ, Δ) -1-ePCA of $\mathbf{M} \in \mathbb{S}^{d \times d}_{\succeq \mathbf{0}}$, it is a $(\Gamma + \Delta)$ -1-ePCA of \mathbf{M} .

Proof. Following the notation in the proof of Lemma 2,

$$\begin{split} \left\langle \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top},\mathbf{M}\right\rangle &= \left\langle \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top},\mathbf{L}\mathbf{L}^{\top}\mathbf{M}\mathbf{L}\mathbf{L}^{\top}\right\rangle + \left\langle \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top},\mathbf{S}\mathbf{S}^{\top}\mathbf{M}\mathbf{S}\mathbf{S}^{\top}\right\rangle \\ &\geq \left\langle \mathbf{L}^{\top}\hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}\mathbf{L},\mathbf{L}^{\top}\mathbf{M}\mathbf{L}\right\rangle \\ &\geq (1-\Delta)(1-\Gamma)\boldsymbol{\lambda}_{1} \geq (1-\Gamma-\Delta)\boldsymbol{\lambda}_{1}. \end{split}$$

In the last line, we used that $\|\mathbf{L}^{\top}\hat{\mathbf{u}}\|_{2}^{2} \geq 1 - \Delta$ by assumption, and that $\mathbf{L}^{\top}\hat{\mathbf{u}}$ is a vector in the span of $\mathbf{L}^{\top}\mathbf{M}\mathbf{L}$, whose smallest eigenvalue is at least $(1 - \Gamma)\lambda_{1}$.

We give a short application of these conversion results, showing that we can efficiently estimate the top eigenvalue of a matrix via matrix-vector queries.

Corollary 2. In the setting of Theorem 3, let $\delta, \epsilon \in (0,1)$, and let $p \geq \frac{16}{\epsilon} \log(\frac{128d}{\delta\epsilon})$. There is an algorithm that uses

$$m = \sqrt{2p \log\left(\frac{192}{\delta\epsilon}\right)} = O\left(\frac{1}{\sqrt{\epsilon}} \log\left(\frac{d}{\delta\epsilon}\right)\right)$$

matrix-vector multiplications through \mathbf{M} and $O(m^2)$ additional time, and with probability $\geq 1 - \delta$, returns $\hat{\mathbf{u}}$ that is a ϵ -1-cPCA of \mathbf{M} . Assuming the success of this procedure, with $O(\mathcal{T}_{mv}(\mathbf{M}) + d)$ additional time, we can compute $\hat{\lambda}$ satisfying $\boldsymbol{\lambda}_1 \geq \hat{\lambda} \geq (1 - \epsilon)\boldsymbol{\lambda}_1$.

Proof. For the first conclusion, we set $\Gamma = \Delta = \frac{\epsilon}{2}$ in Corollary 1, and apply Lemma 3. For the second conclusion, it is enough to output $\hat{\mathbf{u}}^{\top} \mathbf{M} \hat{\mathbf{u}}$ which takes $O(\mathcal{T}_{mv}(\mathbf{M}) + d)$ time.

_	-	

4 Shift-and-invert preconditioning

In this section, we describe the *shift-and-invert preconditioning* framework for computing approximate top eigenvectors of a matrix. This framework reduces top eigenvector computation to approximately solving a small number of well-conditioned linear systems. These subproblems in turn are amenable to stochastic optimization techniques, e.g., the stochastic variance-reduced gradient method of Section 6, Part III, that can improve the runtimes obtained in Section 2.

The basic idea of shift-and-invert is the following observation: for any $\lambda \geq \lambda_1$, the matrix $\lambda \mathbf{I}_d - \mathbf{M}$ is positive semidefinite and has the eigenvalues $\{\lambda - \lambda_i\}_{i \in [d]}$ in nondecreasing order (so $\lambda - \lambda_d$ is largest). Thus, the power method applied to the *shifted* matrix $\lambda \mathbf{I}_d - \mathbf{M}$, for judiciously chosen λ , can be used to estimate the bottom eigenvector of \mathbf{M} . However, we are more interested in its application to PCA, which follows because the top eigenvector of the *shift-and-inverted* matrix $(\lambda \mathbf{I}_d - \mathbf{M})^{-1}$ is again \mathbf{u}_1 . The upside is that $(\lambda \mathbf{I}_d - \mathbf{M})^{-1}$ may be much better-conditioned than \mathbf{M} , and hence a few applications of it is enough to estimate \mathbf{u}_1 .

Here we describe a shift-and-invert preconditioning framework for top eigenvector approximation, adapted from [GHJ⁺16, AZL16]. Specifically, for some δ , Γ , $\Delta \in (0, 1)$ fixed throughout, our goal is to return a (Γ , Δ)-1-cPCA of **M** with probability $\geq 1 - \delta$. For simplicity, we assume we can exactly solve linear systems. The main point of [GHJ⁺16, AZL16] is that the algorithm is robust to inexact solves, and that this can be used to obtain various applications (e.g., approximate k-PCA).

Estimating the top eigenvalue. The first step is to tighly estimate λ_1 . We show how to obtain $\hat{\lambda}$ satisfying $(1 + \frac{\Gamma}{4})\lambda_1 \leq \hat{\lambda} \leq (1 + \frac{\Gamma}{2})\lambda_1$, assuming we start with a rough initial estimate $\hat{\lambda}_0$ that satisfies $\lambda_1 \leq \hat{\lambda}_0 \leq R\lambda_1$ for some parameter R. We proceed in a sequence of iterations $0 \leq t < T$ maintaining an invariant $\hat{\lambda} \geq \lambda_1$, where in each iteration t we compute a value

$$\alpha_t \in \left[\frac{1}{2}\left(\hat{\lambda}_t - \boldsymbol{\lambda}_1\right), \hat{\lambda}_t - \boldsymbol{\lambda}_1\right].$$
(10)

We then update $\hat{\lambda}_{t+1} \leftarrow \hat{\lambda}_t - \alpha$, which clearly preserves the invariant that $\hat{\lambda}_t \ge \lambda_1$ always, assuming (10) holds. Our termination criterion is $\alpha_T \le \frac{\Gamma}{18} \hat{\lambda}_T$. This implies

$$\hat{\lambda}_T \leq \boldsymbol{\lambda}_1 + 2\alpha_T \leq \boldsymbol{\lambda}_1 + \frac{\Gamma}{9}\hat{\lambda}_T \implies \hat{\lambda}_T \leq \frac{1}{1 - \frac{\Gamma}{9}}\boldsymbol{\lambda}_1 \leq \left(1 + \frac{\Gamma}{6}\right)\boldsymbol{\lambda}_1,$$

from which we can set $\hat{\lambda} \leftarrow (1 + \frac{\Gamma}{4})\hat{\lambda}_T$ and obtain the desired $(1 + \frac{\Gamma}{4})\lambda_1 \leq \hat{\lambda} \leq (1 + \frac{\Gamma}{2})\lambda_1$.

The first key observation is that after few iterations, the stopping criterion $\alpha_T \leq \frac{\Gamma}{18} \hat{\lambda}_T$ must be met. Suppose this were not the case in some iteration t. Then,

$$\hat{\lambda}_t \ge \boldsymbol{\lambda}_1 + \alpha \ge \boldsymbol{\lambda}_1 + \frac{\Gamma}{18} \hat{\lambda}_t \ge \left(1 + \frac{\Gamma}{18}\right) \boldsymbol{\lambda}_1.$$
(11)

On the other hand, in each iteration the update makes multiplicative progress towards λ_1 :

$$\hat{\lambda}_{t+1} - \boldsymbol{\lambda}_1 = \hat{\lambda}_t - \alpha - \boldsymbol{\lambda}_1 \le \left(\hat{\lambda}_t - \boldsymbol{\lambda}_1\right) - \frac{1}{2}\left(\hat{\lambda}_t - \boldsymbol{\lambda}_1\right) = \frac{1}{2}\left(\hat{\lambda}_t - \boldsymbol{\lambda}_1\right).$$

Thus, after at most $T = O(\log(\frac{R}{\Gamma}))$ iterations, the algorithm must terminate.

The second key observation is that to produce an estimate α_t , it is enough to apply Corollary 2 to the matrix $\mathbf{B}_t := (\hat{\lambda}_t \mathbf{I}_d - \mathbf{M})^{-1}$, with $\epsilon \leftarrow \frac{1}{2}$. This is because the top eigenvalue of \mathbf{B}_t is $(\hat{\lambda}_t - \boldsymbol{\lambda}_1)^{-1}$, i.e., the inverse of what α_t in (10) wants to estimate. Corollary 2 requires $O(\log(\frac{dR}{\delta\Gamma}))$ (being conservative with the logarithmic factor) linear system solves in \mathbf{B}_t . Further, we claim that \mathbf{B}_t is always well-conditioned before termination: by applying (11),

$$\frac{\boldsymbol{\lambda}_1(\mathbf{B}_t)}{\boldsymbol{\lambda}_d(\mathbf{B}_t)} \le \frac{\hat{\lambda}_t}{\hat{\lambda}_t - \boldsymbol{\lambda}_1} \le \frac{1 + \frac{\Gamma}{18}}{\frac{\Gamma}{18}} \le \frac{19}{\Gamma}.$$
(12)

The condition number bound (12) will help us bound the runtime of linear system solves later.

Shift-and-inverse widens the gap. Next, recall that following the notation in Definition 1, our goal in (Γ, Δ) -1-cPCA is to return a vector $\hat{\mathbf{u}}$ satisfying

$$\|\mathbf{S}^{\top}\hat{\mathbf{u}}\|_{2}^{2} \leq \Delta^{2}, \text{ where } \mathbf{SS}^{\top} = \sum_{i=\ell+1}^{d} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$$
 (13)

is the projection matrix onto the eigenvectors of \mathbf{M} below the gap. To see why the shift-andinvert preconditioning framework is beneficial computationally, observe that Krylov methods, e.g., Corollary 1, depend only mildly on the Δ parameter, but have a polynomial dependence on Γ^{-1} . Hence it is in our best interest to improve the gap parameter Γ via a transformation.

Fortunately, the transformation $\mathbf{M} \to \mathbf{B} := (\hat{\lambda}\mathbf{I}_d - \mathbf{M})^{-1}$ does exactly this, where $\hat{\lambda}$ is our previously-computed estimate satisfying $(1 + \frac{\Gamma}{4})\boldsymbol{\lambda}_1 \leq \hat{\lambda} \leq (1 + \frac{\Gamma}{2})\boldsymbol{\lambda}_1$. In particular,

$$\boldsymbol{\lambda}_{\ell+1}\left(\mathbf{B}\right) = \frac{1}{\hat{\lambda} - \boldsymbol{\lambda}_{\ell+1}} \leq \frac{1}{\boldsymbol{\lambda}_1 - (1 - \Gamma)\boldsymbol{\lambda}_1} = \frac{1}{\Gamma\boldsymbol{\lambda}_1},$$

while on the other hand,

$$\lambda_1(\mathbf{B}) = rac{1}{\hat{\lambda} - \lambda_1} \geq rac{2}{\Gamma \lambda_1}.$$

Moreover, the eigenvectors of **B** and **M** are exactly the same, and appear in the same order. Thus, the guarantee (13) follows by computing a $(\frac{1}{2}, \Delta)$ -1-cPCA of **B**. By Corollary 1, this only requires $O(\log(\frac{d}{\delta\Delta}))$ matrix-vector multiplications through **B**. By using similar logic to (12), we have

$$\frac{\boldsymbol{\lambda}_1(\mathbf{B})}{\boldsymbol{\lambda}_d(\mathbf{B})} = O\left(\frac{1}{\Gamma}\right).$$

Instantiating the framework. All told, before accounting for approximation error, we have reduced computing (Γ, Δ) -1-cPCA of a matrix **M** to solving $O(\log(\frac{dR}{\delta\Gamma\Delta}))$ linear systems in matrices of the form $\hat{\lambda}\mathbf{I}_d - \mathbf{M}$. Moreover, these matrices always have a condition number $O(\frac{1}{\Gamma})$.

By accounting for approximation error, $[\text{GHJ}^+16]$ show that solving linear systems with accelerated gradient descent (cf. Theorem 2, Part V and Lemma 11, Part II) already gives a runtime of $\approx \mathcal{T}_{\text{mv}}(\mathbf{M}) \cdot \Gamma^{-1/2}$. This shaves a low-order poly $(\frac{1}{\Gamma})$ term from Corollary 1's runtime.

To obtain further runtime improvements, [GHJ⁺16, AZL16] focus on the case $\mathbf{M} = \mathbf{A}^{\top} \mathbf{A}$ for some $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rows $\{\mathbf{a}_i\}_{i \in [n]} \subset \mathbb{R}^d$. It can be shown that accelerated variance reduced methods (introduced in Section 6, Part III) can solve a linear system in $\mathbf{B} = \hat{\lambda} \mathbf{I}_d - \mathbf{A}^{\top} \mathbf{A}$ using

$$\approx \operatorname{nnz}(\mathbf{A}) + \frac{\operatorname{nnz}(\mathbf{A})^{\frac{3}{4}} (d \cdot \operatorname{sr}(\mathbf{A}))^{\frac{1}{4}}}{\sqrt{\Gamma}}$$
(14)

time, where we hide logarithmic factors in the target error, and define the stable rank of \mathbf{A} by

$$\operatorname{sr}\left(\mathbf{A}\right) := \frac{\|\mathbf{A}\|_{\mathrm{F}}^2}{\|\mathbf{A}\|_{\operatorname{op}}^2} = \frac{\sum_{i \in [d]} \lambda_i(\mathbf{M})^2}{\lambda_1(\mathbf{M})^2}.$$

Observe that $\operatorname{sr}(\mathbf{A}) \leq \operatorname{rank}(\mathbf{A}) \leq d$, and in general, low-rank approximation is well-motivated when $\operatorname{sr}(\mathbf{A})$ is small. In particular, when $\operatorname{nnz}(\mathbf{A}) \approx nd$, the runtime (14) improves upon the $O(nd \cdot \Gamma^{-1/2})$ time required by accelerated gradient descent by a factor of $\approx (\frac{n}{\operatorname{sr}(\mathbf{A})})^{1/4}$. By using the shift-and-invert framework, [GHJ+16] shows that the entire cost of (Γ, Δ) -1-cPCA is thus proportional to (14) up to logarithmic factors; for a range of moderate Γ , this is input-sparsity time.

5 Deflation methods

In this section, we overview a reduction-based approach for approximately performing k-PCA known as *deflation* (see, e.g., [Mac08]). This approach iteratively peels off approximate 1-PCAs to a residual matrix via orthogonal projection. Concretely, let $\mathcal{O} : \mathbb{S}^{d \times d}_{\geq 0} \to \mathcal{U}_1$ be an algorithm that

returns an approximate top eigenvector to its input \mathbf{M} , for an approximation notion to be defined. Deflation methods for k-PCA initialize $\mathbf{\Pi}_0 \leftarrow \mathbf{I}_d$ and $i \leftarrow 1$, and iterate

$$\mathbf{v}_{i} \leftarrow \mathcal{O}\left(\mathbf{\Pi}_{i-1}\mathbf{M}\mathbf{\Pi}_{i-1}\right), \ \mathbf{\Pi}_{i} \leftarrow \mathbf{\Pi}_{i-1} - \mathbf{v}_{i}\mathbf{v}_{i}^{\top}, \ \text{for } i \in [k].$$

$$(15)$$

We assume that $\mathbf{v}_i \in \text{Span}(\mathbf{\Pi}_{i-1})$ in each iteration *i*, which is essentially without loss of generality when accessing $\mathbf{\Pi}_{i-1}\mathbf{M}\mathbf{\Pi}_{i-1}$ via matrix-vector products. Thus, (15) returns the columns $\{\mathbf{v}_i\}_{i\in[k]}$ of an orthonormal matrix $\mathbf{V} \in \mathcal{U}_k$. Further, because distinct eigenspaces are orthogonal, Lemma 1 shows that when \mathcal{O} computes top eigenvectors exactly, the output \mathbf{V} is also an exact solution to the *k*-PCA problem (2). This is a black-box reduction from exact *k*-PCA to exact 1-PCA.

What is the quality of the output $\mathbf{V} \in \mathcal{U}_k$ from deflation methods, when \mathcal{O} is approximate? In Section 5.1, we motivate this question via statistical settings, where polynomial dependences on accuracy parameters are necessary. In Sections 5.2 and 5.3, we survey results of [AZL16, JKL⁺24], who characterized the lossiness of deflation methods in different parameter regimes.

5.1 Statistical PCA

Consider the following *statistical PCA* problem: there is a distribution \mathcal{D} over \mathbb{R}^d , with mean zero (i.e., $\mathbb{E}_{\mathbf{x}\sim\mathcal{D}}[\mathbf{x}] = \mathbf{0}_d$).⁴ Our goal is to estimate the top eigenvector of the covariance matrix, $\boldsymbol{\Sigma} := \mathbb{E}_{\mathbf{x}\sim\mathcal{D}}[\mathbf{x}\mathbf{x}^{\top}]$, from samples $\{\mathbf{x}_i\}_{i\in[n]} \sim_{\text{i.i.d.}} \mathcal{D}$. Notably, in this problem we do not have access to $\boldsymbol{\Sigma}$, and instead must use empirical estimates computed from our dataset $\{\mathbf{x}_i\}_{i\in[n]}$.

Often, in machine learning applications, statistical PCA is our actual goal, so that we can learn an "important subspace" of \mathcal{D} for use in downstream tasks, e.g., low-rank approximation or clustering. The offline PCA problem we have studied thus far (i.e., computing an approximate top eigenvector of the explicit matrix $\hat{\boldsymbol{\Sigma}} := \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i \mathbf{x}_i^{\top}$) is only solved as a proxy for statistical PCA.

To analyze this strategy, we make the following assumptions about \mathcal{D} :

$$\left\| \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\|\mathbf{x}\|_2^2 \mathbf{x} \mathbf{x}^\top \right] \right\|_{\text{op}} \le \sigma^2, \text{ and } \|\mathbf{x}\|_2 \le R \text{ with probability 1 over } \mathbf{x} \sim \mathcal{D}.$$
(16)

For intuition, suppose $\mathcal{D} = \mathcal{N}(\mathbf{0}_d, \mathbf{\Sigma})$ for some $\mathbf{\Sigma} \leq \mathbf{I}_d$. Then one can show that (16) holds with $\sigma^2 = O(d)$, using that Gaussian distributions satisfy the following 2-to-4 hypercontractivity bound:

$$\mathbb{E} \langle \mathbf{x}, \mathbf{u} \rangle^4 \leq O(1) \text{ for all } \|\mathbf{u}\|_2 = 1.$$

Moreover, clipping the distribution so that $R \approx \sqrt{d}$ negligibly changes the covariance. More generally, even for *heavy-tailed* hypercontractive distributions where the latter bound in (16) fails and we only have the former, the bias of clipping to enforce $\|\mathbf{x}\|_2 \leq R$ can usually be directly bounded, see e.g., Lemma 14, [JKL⁺24]. In this section, we will simply assume (16) holds.

Our primary tool used to compare the empirical and true covariances, $\hat{\Sigma}$ and Σ , is a variant of an eigenspace perturbation result by [Wed72], which we adapt from Lemma B.3, [AZL16]. Intuitively, it says that if we lightly perturb a matrix **M**, then eigenspaces of **M** that originally had a gap between them still remain mostly-uncorrelated after the perturbation.

Lemma 4 (Gap-free Wedin's theorem). Let $\epsilon, \lambda, \tau > 0$, and let $\mathbf{M}, \widehat{\mathbf{M}} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$ have $\|\mathbf{M} - \widehat{\mathbf{M}}\|_{\mathrm{op}} \leq \epsilon$. Let \mathbf{L}, \mathbf{S} have eigenvectors of \mathbf{M} with eigenvalues $> \lambda$ and $\leq \lambda$ as columns respectively, so $\mathbf{L}\mathbf{L}^{\top} + \mathbf{S}\mathbf{S}^{\top} = \mathbf{I}_d$. Similarly, let $\widehat{\mathbf{L}}, \widehat{\mathbf{S}}$ have eigenvectors of $\widehat{\mathbf{M}}$ with eigenvalues $> \lambda + \tau$ and $\leq \lambda + \tau$ as columns respectively. Then,

$$\left\| \mathbf{S}^{\top} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} \leq \frac{\epsilon}{\tau}.$$

Proof. For convenience, let us write the entire eigendecompositions of $\mathbf{M}, \widehat{\mathbf{M}}$, as

$$\mathbf{M} = \mathbf{L} \mathbf{\Lambda}_L \mathbf{L}^{ op} + \mathbf{S} \mathbf{\Lambda}_S \mathbf{S}^{ op}, \ \widehat{\mathbf{M}} = \widehat{\mathbf{L}} \widehat{\mathbf{\Lambda}}_L \widehat{\mathbf{L}}^{ op} + \widehat{\mathbf{S}} \widehat{\mathbf{\Lambda}}_S \widehat{\mathbf{S}}^{ op},$$

⁴This zero mean assumption is without loss of generality in the context of statistical PCA. Otherwise, we can define a modified distribution \mathcal{D}' where a draw from \mathcal{D}' takes $\mathbf{x}, \mathbf{x}' \sim_{i.i.d.} \mathcal{D}$ and returns $\mathbf{x} - \mathbf{x}'$. Then, \mathcal{D}' has mean $\mathbf{0}_d$, and has the same covariance matrix as \mathcal{D} up to scaling, so we can solve PCA on \mathcal{D}' instead.

so $\|\mathbf{\Lambda}_S\|_{\mathrm{op}} \leq \lambda$, and $\|\widehat{\mathbf{\Lambda}}_L^{-1}\|_{\mathrm{op}} \leq \frac{1}{\lambda+\tau}$. Letting $\mathbf{R} := \mathbf{M} - \widehat{\mathbf{M}}$, we have by orthogonality of \mathbf{S}, \mathbf{L} that

$$\begin{split} \mathbf{\Lambda}_{S}\mathbf{S}^{\top} &= \mathbf{S}^{\top}\mathbf{M} = \mathbf{S}^{\top}\left(\widehat{\mathbf{M}} + \mathbf{R}\right) \\ \Longrightarrow & \mathbf{\Lambda}_{S}\mathbf{S}^{\top}\widehat{\mathbf{L}} = \mathbf{S}^{\top}\widehat{\mathbf{M}}^{\top}\widehat{\mathbf{L}} + \mathbf{S}^{\top}\mathbf{R}\widehat{\mathbf{L}} = \mathbf{S}^{\top}\widehat{\mathbf{L}}\widehat{\mathbf{\Lambda}}_{L} + \mathbf{S}^{\top}\mathbf{R}\widehat{\mathbf{I}} \\ \Longrightarrow & \mathbf{\Lambda}_{S}\mathbf{S}^{\top}\widehat{\mathbf{L}}\widehat{\mathbf{\Lambda}}_{L}^{-1} = \mathbf{S}^{\top}\widehat{\mathbf{L}} + \mathbf{S}^{\top}\mathbf{R}\widehat{\mathbf{L}}\widehat{\mathbf{\Lambda}}_{L}^{-1}. \end{split}$$

Thus, by taking operator norms of both sides,

$$\begin{split} \frac{\lambda}{\lambda+\tau} \left\| \mathbf{S}^{\top} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} &\geq \left\| \mathbf{\Lambda}_{S} \right\|_{\mathrm{op}} \left\| \mathbf{S}^{\top} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} \left\| \widehat{\mathbf{\Lambda}}_{L}^{-1} \right\|_{\mathrm{op}} \\ &\geq \left\| \mathbf{S}^{\top} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} - \left\| \mathbf{S}^{\top} \mathbf{R} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} \left\| \widehat{\mathbf{\Lambda}}_{L}^{-1} \right\|_{\mathrm{op}} \geq \left\| \mathbf{S}^{\top} \widehat{\mathbf{L}} \right\|_{\mathrm{op}} - \frac{\epsilon}{\lambda+\tau}, \end{split}$$

and rearranging yields the bound $\|\mathbf{S}^{\top} \widehat{\mathbf{L}}\|_{\text{op}} \leq \frac{\epsilon}{\tau}$ as desired.

We are now ready to analyze a simple strategy for statistical PCA: take enough i.i.d. samples from \mathcal{D} , and apply Theorem 3 (or Corollary 1) to the empirical covariance.

Proposition 1. Let \mathcal{D} be a distribution on \mathbb{R}^d with mean $\mathbf{0}_d$ and covariance Σ , assume that \mathcal{D} satisfies (16), and let $\delta, \Gamma, \Delta \in (0, 1)$. Given n samples $\{\mathbf{x}_i\}_{i \in [n]} \sim_{i.i.d.} \mathcal{D}$, for

$$n \ge \left(\frac{64\sigma^2}{\lambda_1(\boldsymbol{\Sigma})^2 \Delta \Gamma^2} + \frac{32R^2}{\lambda_1(\boldsymbol{\Sigma})\sqrt{\Delta}\Gamma}\right) \log\left(\frac{2d}{\delta}\right)$$

any $(\frac{\Gamma}{6}, \frac{\Delta}{4})$ -1-cPCA for $\widehat{\Sigma} := \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i \mathbf{x}_i^{\top}$ is a (Γ, Δ) -1-cPCA for Σ with probability $\geq 1 - \delta$.

Proof. Our first goal is to bound $\|\mathbf{\Sigma} - \widehat{\mathbf{\Sigma}}\|_{\text{op}}$, so we may apply Lemma 4. For all $i \in [n]$, define a random matrix $\mathbf{Z}_i := \frac{1}{n} (\mathbf{x}_i \mathbf{x}_i^\top - \mathbf{\Sigma})$, so that $\widehat{\mathbf{\Sigma}} = \sum_{i \in [n]} \mathbf{Z}_i$. Moreover, note that for all $i \in [n]$,

$$\begin{split} \left\| \mathbb{E} \mathbf{Z}_{i}^{2} \right\|_{\mathrm{op}} &= \frac{1}{n^{2}} \left\| \mathbb{E} \left[\mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right] - \mathbf{\Sigma}^{2} \right\|_{\mathrm{op}} \\ &\leq \frac{1}{n^{2}} \left\| \mathbb{E} \left[\mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right] \right\|_{\mathrm{op}} = \frac{1}{n^{2}} \left\| \mathbb{E} \left[\left\| \mathbf{x}_{i} \right\|_{2}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right] \right\|_{\mathrm{op}} \leq \frac{\sigma^{2}}{n^{2}} \end{split}$$

using the first bound in (16). The first line also used that $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\top \mathbf{x}_i \mathbf{x}_i^\top] \succeq \mathbf{\Sigma}^2$, because

$$\mathbb{E}\left[\mathbf{u}^{\top}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{u}\right] = \mathbb{E}\left[\left\|\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{u}\right\|_{2}^{2}\right] \geq \left\|\mathbb{E}\left[\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{u}\right]\right\|_{2}^{2} = \mathbf{u}^{\top}\boldsymbol{\Sigma}^{2}\mathbf{u} \text{ for all } \mathbf{u} \in \mathbb{R}^{d},$$

by convexity of $\|\cdot\|_2^2$ applied to the random vector $\mathbf{x}_i \mathbf{x}_i^\top \mathbf{u}$. Similarly,

$$\left\|\mathbf{Z}_{i}\right\|_{\mathrm{op}} = \frac{1}{n} \left\|\mathbf{x}_{i}\mathbf{x}_{i}^{\top} - \boldsymbol{\Sigma}\right\|_{\mathrm{op}} \leq \frac{1}{n} \left\|\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\right\|_{\mathrm{op}} + \frac{1}{n} \left\|\boldsymbol{\Sigma}\right\|_{\mathrm{op}} \leq \frac{2R^{2}}{n} \text{ with probability 1,}$$

by the second bound in (16), and since $\|\mathbf{\Sigma}\|_{\text{op}} \leq R^2$ by convexity of $\|\cdot\|_{\text{op}}$. We can now apply the matrix Bernstein inequality (Theorem 11, Part VI) with $\mathbf{Z} \leftarrow \mathbf{\Sigma}$, $c \leftarrow \frac{2R^2}{n}$, and $\sigma^2 \leftarrow \frac{\sigma^2}{n}$ to obtain

$$\Pr\left[\left\|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\right\|_{\text{op}} \ge t\right] \le 2d \exp\left(-\min\left(\frac{nt^2}{4\sigma^2}, \frac{nt}{8R^2}\right)\right) \le \delta, \text{ for } t = \frac{\sqrt{\Delta}\Gamma\boldsymbol{\lambda}_1(\boldsymbol{\Sigma})}{4}$$

Assume that the event above does not hold. By the gap-free Wedin's theorem (Lemma 4) applied with $\mathbf{M} \leftarrow \mathbf{\Sigma}$, $\widehat{\mathbf{M}} \leftarrow \widehat{\mathbf{\Sigma}}$, $\lambda \leftarrow (1 - \Gamma) \boldsymbol{\lambda}_1(\mathbf{\Sigma})$, and $\tau \leftarrow \frac{\Gamma}{2} \boldsymbol{\lambda}_1(\mathbf{\Sigma})$, we obtain

$$\left\|\widehat{\mathbf{L}}^{\top}\mathbf{S}\right\|_{\mathrm{op}} \leq \frac{2}{\Gamma \boldsymbol{\lambda}_{1}(\boldsymbol{\Sigma})} \cdot \frac{\sqrt{\Delta}\Gamma \boldsymbol{\lambda}_{1}(\boldsymbol{\Sigma})}{4} = \frac{1}{2}\sqrt{\Delta}.$$

Here, we followed notation in Lemma 4, so **S** spans the eigenspace of **M** below $(1 - \Gamma)\lambda_1(\Sigma)$, and $\widehat{\mathbf{L}}$ spans the eigenspace of $\widehat{\mathbf{M}}$ above $(1 - \frac{\Gamma}{2})\lambda_1(\Sigma)$. Furthermore, note that $\lambda_1(\widehat{\Sigma}) \ge (1 - \frac{\Gamma}{4})\lambda_1(\Sigma)$, and $(1 - \frac{\Gamma}{6})(1 - \frac{\Gamma}{4})\lambda_1(\Sigma) \ge (1 - \frac{\Gamma}{2})\lambda_1(\Sigma)$. Thus if $\hat{\mathbf{u}}$ is a $(\frac{\Gamma}{6}, \frac{\Delta}{4})$ -1-cPCA for $\widehat{\Sigma}$, it must satisfy

$$\left\|\widehat{\mathbf{S}}^{\top}\widehat{\mathbf{u}}\right\|_{2}^{2} \leq \frac{\Delta}{4}$$

where $\hat{\mathbf{S}}$ is the complement to $\hat{\mathbf{L}}$ as in Lemma 4. Combining the above two displays, we have the desired claim that $\hat{\mathbf{u}}$ is a (Γ, Δ) -cPCA, because

$$\left\|\mathbf{S}^{\top}\hat{\mathbf{u}}\right\|_{2}^{2} \leq \left(\left\|\mathbf{S}^{\top}\widehat{\mathbf{L}}\widehat{\mathbf{L}}^{\top}\hat{\mathbf{u}}\right\|_{2} + \left\|\mathbf{S}^{\top}\widehat{\mathbf{S}}\widehat{\mathbf{S}}^{\top}\hat{\mathbf{u}}\right\|_{2}\right)^{2} \leq \left(\left\|\mathbf{S}^{\top}\widehat{\mathbf{L}}\right\|_{\mathrm{op}} + \left\|\widehat{\mathbf{S}}^{\top}\hat{\mathbf{u}}\right\|_{2}\right)^{2} \leq \Delta^{2}.$$

Let us give an example to understand Proposition 1. As discussed earlier, after a mild amount of clipping, Gaussian distributions \mathcal{D} satisfy $\frac{\sigma^2}{\lambda_1(\Sigma)^2}, \frac{R^2}{\lambda_1(\Sigma)} \lesssim d$. Thus, Proposition 1 states that

$$n \approx \frac{d \log(d)}{\Delta \Gamma^2} \tag{17}$$

samples are needed for the empirical covariance to serve as a good proxy in statistical PCA.

One interesting qualitative aspect of this bound is its polynomial dependence on both Γ^{-1} and Δ^{-1} . This is in contrast to the offline setting (e.g., Theorem 3, Corollary 1), which depended on $\log(\frac{1}{\Delta})$. In fact, it is known that these polynomial dependences are necessary in the statistical setting (Theorem 3.1, [VL13]), motivating the question of fine-grained guarantees for how the error parameters Γ, Δ blow up in deflation methods for cPCA.

Indeed, the design of approximate 1-PCA algorithms, let alone k-PCA algorithms, becomes even more complicated when additional constraints are added (see [JKL+24] for a list of well-studied statistical PCA problems, including streaming, dependent sample, robust, and private variants). Thus, deflation methods are attractive to algorithm designers as a way to focus on the least complicated 1-PCA case, presuming we can bound their degradation in quality.

5.2 Black-box ePCA

The good news is that if we shift our notion to approximation to ePCA (Definition 2), deflation methods result in *no blowup* of the approximation parameter. Concretely, following the notation in (2), say that $\mathbf{V} \in \mathcal{U}_k$ is an ϵ -k-ePCA of \mathbf{M} , if

$$\langle \mathbf{V}\mathbf{V}^{\top}, \mathbf{M} \rangle \ge (1 - \epsilon) \max_{\mathbf{U} \in \mathcal{U}_k} \langle \mathbf{U}\mathbf{U}^{\top}, \mathbf{M} \rangle.$$

Then we have the following black-box reduction from k-ePCA to 1-ePCA.

Proposition 2. Let $\mathbf{M} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$, and for any projection matrix $\mathbf{\Pi} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$, let \mathcal{O} be an oracle that takes input $\mathbf{\Pi}\mathbf{M}\mathbf{\Pi}$ and returns \mathbf{v} , an ϵ -1-ePCA to $\mathbf{\Pi}\mathbf{M}\mathbf{\Pi}$ satisfying $\mathbf{v} \in \mathrm{Span}(\mathbf{\Pi})$. Further, let $\mathbf{V} \in \mathcal{U}_k$ concatenate $\{\mathbf{v}_i\}_{i \in [k]}$ resulting from iterating (15). Then \mathbf{V} is an ϵ -k-ePCA to \mathbf{M} .

Proof. We proceed by induction on $i \in [k]$. Let \mathbf{V}_i denote the horizontal concatenation of the first i calls to \mathcal{O} , so that $\mathbf{\Pi}_i = \mathbf{I}_d - \mathbf{V}_i \mathbf{V}_i^{\top}$. The inductive hypothesis tells us

$$\left\langle \mathbf{V}_{i}\mathbf{V}_{i}^{\top},\mathbf{M}\right\rangle \geq (1-\epsilon)\max_{\mathbf{U}\in\mathcal{U}_{i}}\left\langle \mathbf{U}\mathbf{U}^{\top},\mathbf{M}
ight
angle =\sum_{j\in[i]}\boldsymbol{\lambda}_{j}(\mathbf{M}),$$

where we applied Lemma 1 to compute the right-hand side. This then implies

$$\begin{aligned} \operatorname{Tr}\left(\mathbf{V}_{i+1}^{\top}\mathbf{M}\mathbf{V}_{i+1}\right) &= \operatorname{Tr}\left(\mathbf{V}_{i}^{\top}\mathbf{M}\mathbf{V}_{i}\right) + \mathbf{v}_{i+1}^{\top}\mathbf{M}\mathbf{v}_{i+1} \\ &\geq (1-\epsilon)\left(\sum_{j\in[i]}\boldsymbol{\lambda}_{j}(\mathbf{M})\right) + \mathbf{v}_{i+1}^{\top}\mathbf{M}\mathbf{v}_{i+1} \\ &\geq (1-\epsilon)\left(\sum_{j\in[i]}\boldsymbol{\lambda}_{j}(\mathbf{M})\right) + (1-\epsilon)\left\|\mathbf{\Pi}_{i}\mathbf{M}\mathbf{\Pi}_{i}\right\|_{\mathrm{op}} \\ &\geq (1-\epsilon)\left(\sum_{j\in[i+1]}\boldsymbol{\lambda}_{j}(\mathbf{M})\right).\end{aligned}$$

The second line used the inductive hypothesis on \mathbf{V}_i , the third line used the 1-ePCA guarantee on \mathbf{v}_{i+1} , and the last line applied the Cauchy interlacing theorem (Corollary 4, Part VI).

5.3 Black-box cPCA

The story gets murkier when it comes to deflation methods for cPCA. In this discussion, let $\gamma, \delta \in (0, 1)$, and suppose that \mathcal{O} in (2) returns a (γ, δ) -1-cPCA to its input. Further, define $\kappa_k := \frac{\lambda_1}{\lambda_k}$, where **M** has eigendecomposition (5). Our goal is to understand when the deflation method (2) returns a set of vectors $\{\mathbf{v}_i\}_{i \in [k]}$ that is a (Γ, Δ) -k-cPCA, and bound how large Γ, Δ are as a function of the original parameters γ, δ , as well as potentially k, κ_k .

The baseline is to use Proposition 2 alongside our conversion results, Lemmas 2 and 3. In fact, one can show a variant of Lemma 2 that says any ϵ -k-ePCA of **M** is also an $(\frac{\epsilon k \kappa_k}{\Gamma}, \Gamma)$ -k-cPCA of **M** (Lemma 1, [JKL⁺24]). Directly plugging this into Proposition 2 implies it is enough to take $\epsilon = \frac{\Gamma \Delta}{k \kappa_k}$, so Lemma 3 shows we can take $\gamma = \delta = O(\frac{\Gamma \Delta}{k \kappa_k})$ in our 1-cPCA oracle \mathcal{O} .

In the statistical setting with i.i.d. Gaussian data, putting these parameters into (17) results in

$$n \approx d \log(d) \cdot \frac{k^3 \kappa_k^3}{\Gamma^3 \Delta^3}$$

samples required to solve 1-cPCA to the level needed for deflation to yield a (Γ, Δ) -k-cPCA. Improving upon this in some parameter regimes, [AZL16] showed that it is enough to take

$$\gamma = \frac{\Gamma}{2}, \ \delta = \Theta\left(\frac{\Gamma^2 \Delta^2}{k^4 \kappa_k^2}\right),$$

for (15) to give a (Γ, Δ) -k-cPCA, which in the case of (17) needs $\approx d \log(d) \cdot \frac{k^4 \kappa_k^2}{\Delta^2 \Gamma^4}$ samples for \mathcal{O} . The upshot of the [AZL16] result is that it works very well in the *offline* cPCA setting, where $\operatorname{polylog}(\frac{1}{\Delta})$ rates are possible given an explicit matrix (Theorem 3, Corollary 1). Thus, the blowup of $\delta \to \Delta$ in their reduction is less of an issue, and $\gamma \approx \Gamma$ is the salient feature.

Returning to the statistical setting, it is known that the optimal sample complexity of solving (Γ, Δ) -k-cPCA in one shot (rather than via deflation methods) scales as $\approx \frac{\kappa_k}{\Gamma^2 \Delta}$ [VL13], which is tight up to the dependence on k [AL17]. This matches the dependences of the 1-cPCA case in terms of Γ, Δ . Thus, ambitiously, could we hope for *lossless* or near-lossless cPCA reductions, more in line with what we showed in Proposition 2 (where ϵ did not blow up at all)?

This question was studied recently by $[JKL^{+}24]$, who showed the answer is actually no: if $\Gamma \lesssim \kappa_k \sqrt{\Delta}$, deflation methods fail to give a lossless cPCA reduction, even if k = 2 and d = 3. This shows a qualitative separation between our approximation notions in Definitions 1 and 2. More generally, assuming that we are in the opposite regime $\Gamma \gtrsim \kappa_k \sqrt{\Delta}$, a lossless reduction actually is possible for any constant k (Theorem 2, $[JKL^{+}24]$). Unfortunately, the parameters in $[JKL^{+}24]$ reduction lose a $k^{\Theta(\log k)}$ factor, and it is an open problem to improve the k dependence to polynomial.

Source material

This lecture is based on the author's own experience working in the field.

References

- [AL17] Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-pca: A global, gap-free, and near-optimal rate. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages 487–492. IEEE Computer Society, 2017.
- [AZL16] Zeyuan Allen-Zhu and Yuanzhi Li. Even faster SVD decomposition yet without agonizing pain. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, pages 974–982, 2016.
- [BCW22] Ainesh Bakshi, Kenneth L. Clarkson, and David P. Woodruff. Low-rank approximation with 1/ε^{1/3} matrix-vector products. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022, pages 1130–1143. ACM, 2022.
- [BN23] Ainesh Bakshi and Shyam Narayanan. Krylov methods are (nearly) optimal for lowrank approximation. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, pages 2093–2101. IEEE, 2023.
- [EY36] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218, 1936.
- [GHJ⁺16] Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, and Aaron Sidford. Faster eigenvector computation via shift-and-invert preconditioning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 2626– 2634. JMLR.org, 2016.
- [JKL⁺24] Arun Jambulapati, Syamantak Kumar, Jerry Li, Shourya Pandey, Ankit Pensia, and Kevin Tian. Black-box k-to-1-pca reductions: Theory and applications. In *The Thirty* Seventh Annual Conference on Learning Theory, volume 247 of Proceedings of Machine Learning Research, pages 2564–2607. PMLR, 2024.
- [Lia23] Xin Liang. On the optimality of the oja's algorithm for online pca. Statistics and Computing, 33(3):62, 2023.
- [Mac08] Lester W. Mackey. Deflation methods for sparse PCA. In Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, pages 1017–1024. Curran Associates, Inc., 2008.
- [Mir60] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. *Quart. J. Math. Oxford*, 11:50–59, 1960.
- [MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value decomposition. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, pages 1396–1404, 2015.
- [MMS18] Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the lanczos method for matrix function approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1605–1624. SIAM, 2018.
- [VL13] Vincent Q. Vu and Jing Lei. Minimax sparse principal subspace estimation in high dimensions. Annals of Statistics, 41(6):2905–2947, 2013.
- [Wed72] Per-Ake Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathematics, 12(1):99–111, 1972.