
CS395T: Continuous Algorithms, Part XI
Low-rank approximation

Kevin Tian

1 Principal component analysis
In this lecture, we introduce the topic of low-rank approximation. Broadly speaking, the goal of
low-rank approximation is to approximate a matrix A ∈ Rn×d, potentially of rank as large as
min(n, d), as well as possible with a matrix Ã of much smaller rank.

Because of the Eckart-Young-Mirsky theorem (Theorem 1), this is often conflated with the goal of
principal component analysis. In order to state this result, we first require the following definition:

Uk :=
{
U ∈ Rd×k | U>U = Ik

}
. (1)

In other words, Uk is the set of d× k matrices with orthonormal columns. We can now define the
k-principal component analysis (k-PCA) problem, which asks to return V ∈ Uk satisfying〈

VV>,M
〉

= max
U∈Uk

〈
UU>,M

〉
, (2)

where M ∈ Sd×d�0 . It is a well-known fact in numerical linear algebra that the optimal solution to
(2) is a basis for any eigenspace corresponding to the k largest eigenvalues of M.

Lemma 1. Let UΛU> =
∑
i∈[d] λiuiu

>
i be the eigendecomposition of M ∈ Sd×d�0 , where the

{λi}i∈[d] are nonincreasing, let [m] ⊆ [d] correspond to indices i ∈ [d] where λi ≥ λk, and let
[`] ⊆ [m] correspond to indices i ∈ [d] where λi > λk. Then V ∈ Uk solves (2) optimally iff

Span
(
{ui}i∈[`]

)
⊆ Span (V) ⊆ Span

(
{ui}i∈[m]

)
. (3)

Proof. First, the von Neumann trace inequality (Theorem 6, Part VI) shows that

max
U∈Uk

〈
UU>,M

〉
≤
∑
i∈[k]

λi,

since UU> has exactly k eigenvalues equal to 1, and the rest are 0. Moreover, examining the proof
of Theorem 6, Part V implies that if we let {vi}i∈[k] denote the columns of V, then the extremal
value above is attained iff |〈uσ(i),vi〉| = 1 for all i ∈ [k] and a permutation σ : [d]→ [d] such that
{λσ(i)}i∈[k] has the same sum as {λi}i∈[k], which is equivalent to the condition (3).

Lemma 1 shows that solving (2) is computationally tractable (i.e., performable in polynomial time
via eigendecomposition) for any k ∈ [d]. This is perhaps somewhat surprising, given that even the
k = 1 case of (2) asks to maximize a convex function (i.e., u>Mu for ‖u‖2 ≤ 1) over a convex set,
which is a nonconvex optimization (indeed, a concave minimization) problem.

In fact, the following theorem due to Eckart-Young and Mirsky [EY36, Mir60], as alluded to
earlier, shows that optimally performing k-PCA simultaneously solves a broad range of low-rank
approximation problems beyond the quadratic form maximization problem in (2).

Theorem 1 (Eckart-Young-Mirsky). Let A ∈ Rn×d with n ≥ d, and let ‖·‖ be a unitarily-invariant
norm.1 Then letting V ∈ Uk attain the maximum value in (2) for M := A>A, we have∥∥A−AVV>

∥∥ ≤ ∥∥∥A− Ã
∥∥∥ , for all rank-k Ã ∈ Rn×d. (4)

1We defined unitarily-invariant norms in Part VI, Section 2.2.
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Proof. We only prove the cases where ‖·‖ = ‖·‖op and ‖·‖ = ‖·‖F here, deferring a proof of the
general case to [Mir60], which draws upon some of the analysis tools from Part VI.

Let UΣV> be the singular value decomposition of A (Corollary 3, Part VI), where Σ = diag (σ)
and we assume σ is in nonincreasing order. Moreover, let the columns of U be denoted {ui}i∈[d] ⊂
Rn, and similarly let {vi}i∈[d] ⊂ Rd be the columns of V. Observe that

M = A>A = VΛV>, where Λ = Σ2.

Thus, by Lemma 1, the optimal solution to (2) is given by the first k columns of V, corresponding
to the k largest singular values of A (breaking ties arbitrarily). Thus, our goal is to prove that

A

∑
i∈[k]

viv
>
i

 =

∑
j∈[d]

σjujv
>
j

∑
i∈[k]

viv
>
i

 =
∑
i∈[k]

σiuiv
>
i

is the optimal low-rank approximation to A in the sense of (4), when ‖·‖ ∈ {‖·‖op , ‖·‖F}.

For the operator norm, we proceed as follows. Let Ã = XY> be rank-k, with X ∈ Rn×k and
Y ∈ Rd×k. Let V[k+1]: denote the first k + 1 columns of V. Because Span(Y) is k-dimensional,
there must be some v ∈ Rd in Span(V[k+1]:) such that Y>v = 0k. Without loss of generality, let
‖v‖2 = 1, so that by orthonormality of the columns of V, v = V[k+1]:w where ‖w‖2 = 1. Then,∥∥∥A− Ã

∥∥∥
op
≥
∥∥∥(A− Ã

)
v
∥∥∥

2
= ‖Av‖2

=
∥∥AV[k+1]:w

∥∥
2

=

∥∥∥∥∥∥
∑

i∈[k+1]

σiwiui

∥∥∥∥∥∥
2

=

√ ∑
i∈[k+1]

σ2
iw

2
i ≥ σk+1,

where the minimal value in the last inequality is achieved by w with all its mass on the (k + 1)th

coordinate. Finally, observe that ‖A− Ã‖op = σk+1 is achieved by Ã =
∑
i∈[k] σiuiv

>
i .

For the Frobenius norm, again let Ã ∈ Rn×d be any rank-k matrix. Then for all i ≥ 1,

σi

(
A− Ã

)
= σi

(
A− Ã

)
+ σk+1

(
Ã
)

= σ1

(
A− Ã−B

)
+ σ1

(
Ã− Ã

)
≥ σ1

(
A−

(
Ã + B

))
≥ σi+k (A) ,

for some rank-(i−1) B ∈ Rn×d, where the first inequality used that σ1 is the operator norm (which
obeys the triangle inequality), and the second inequality used our earlier characterization of the
operator norm and the fact that Ã + B is rank-(k + i− 1). Hence,

∥∥∥A− Ã
∥∥∥2

F
≥

∑
i∈[d−k]

σi

(
A− Ã

)2

≥
d∑

i=k+1

σi(A)2.

It is straightforward to verify that equality is achieved above by taking Ã =
∑
i∈[k] σiuiv

>
i .

Theorem 1 shows that developing algorithms for computing low-rank approximations to possibly
asymmetric A ∈ Rn×d in any unitarily-invariant norm reduces to efficiently performing k-PCA
on a PSD matrix (i.e., M = A>A). The rest of these notes focus on this latter task. In fact,
we primarily focus on the k = 1 case for simplicity. However, throughout we will discuss how
our methods extend to the case of general k, and indeed, the focus of Section 5 is how to use
approximate 1-PCA algorithms in a black-box fashion to approximate k-PCA as well.

In the rest of these notes, M will always be a target matrix in Sd×d�0 that we wish to perform PCA
on. We denote its eigendecomposition (breaking ties arbitrarily) by

M = UΛU> =
∑
i∈[d]

λiuiu
>
i , where λ has nonincreasing coordinates. (5)
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2 Krylov methods
In this section, we focus on algorithms for computing an approximate 1-PCA to M ∈ Sd×d�0 , which
only access M through matrix-vector products. This access model is interesting for several reasons.
First, it is well-motivated in applications where M is implicit. For example, if we are targetting
low-rank approximations to A ∈ Rn×d, the cost of actually computing M = A>A scales as ndω−1

in theory and nd2 in practice (cf. discussion in Remark 1, Part IX). However, we can simulate
matrix-vector queries with M via two multiplications through A, requiring just O(nnz(A)) time.
More generally, when M is a small power or otherwise simple function of a matrix, explicitly
forming M can be significantly more expensive than matrix-vector products. Finally, given the
restricted nature of matrix-vector products, it is often possible to establish strong lower bounds
on the performance of algorithms in this query model [BCW22, BN23].

We begin by describing the power method, perhaps the most famous algorithm for approximate
1-PCA (which, as seen in Lemma 1, is equivalent to top eigenvector computation).

Theorem 2 (Power method, gapped variant). Let M ∈ Sd×d�0 have eigendecomposition (5), and
suppose for some Γ ∈ (0, 1), it is the case that λ2 ≤ (1 − Γ)λ1. Further, let δ,∆ ∈ (0, 1), and
p ≥ 8

Γ log( 32d
δ∆ ). Then, with probability ≥ 1− δ, we have that 〈û,u1〉2 ≥ 1−∆,2 where

û :=
Mpg

‖Mpg‖2
for g ∼ N (0d, Id) .

Proof. For all i ∈ [d], 〈g,ui〉 is an independently-distributed random variable ∼ N (0, 1).3 Each
random variable is 1-sub-Gaussian, so with probability ≥ 1− δ

2 , Theorem 1, Part VI shows

|〈g,ui〉| ≤

√
2 log

(
2d

δ

)
, for all i ∈ [d].

Moreover, we can directly show that with probability ≥ 1− δ
2 , | 〈g,u1〉 | ≥ δ

4 : indeed for any r > 0,

Pr
Z∼N (0,1)

[Z ∈ [−r, r]] =
1√
2π

∫ r

−r
exp

(
−s

2

2

)
ds ≤

∫ r

−r
ds ≤ 2r.

Thus, union bounding on the above two events, we have that with probability ≥ 1− δ,

〈g,ui〉2

〈g,u1〉2
≤

32 log
(
d
δ

)
δ2

=: R, for all 2 ≤ i ≤ d. (6)

Condition on (6) in the remainder of the proof. Now, let P := Mp and observe that λ1(P) = λp1 ≥
(1 + Γ)pλp2 ≥ dR

∆ λ2(P) for our choice of p. Thus, we have

‖Pg‖22 =
∑
i∈[d]

〈Pg,ui〉2 =
∑
i∈[d]

λpi 〈g,ui〉
2

= λp1 〈g,u1〉2
(

1 +

d∑
i=2

(
λpi
λp1

)(
〈g,ui〉2

〈g,u1〉2

))

≤ λp1 〈g,u1〉2
(

1 + dR · ∆

dR

)
= (1 + ∆)λp1 〈g,u1〉2 .

Finally, the desired claim follows from

〈û,u1〉2 =
〈Pg,u1〉2

‖Pg‖22
=

λp1 〈g,u1〉2

‖Pg‖22
≥ 1

1 + ∆
≥ 1−∆.

2In this context, it is more reasonable to track the squared quantity than 〈û,u1〉 directly, because −u1 is also a
top eigenvector of M, so we should accept either as a 1-PCA solution.

3This is clear when {ui}i∈[d] is the standard basis vectors {ei}i∈[d]; the general case follows by rotational
invariance of the Gaussian density (alternatively, direct computation on the PDF of multivariate Gaussians).
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Theorem 1 has a simple and intuitive message. Assuming the existence of a gap in the spectrum
of M, i.e., that u1 is “obviously” the top eigenvector by at least a factor of 1− Γ, we can amplify
this gap by powering up the matrix M into P = Mp. In particular, P has the same eigenvectors
as M, but has a much larger gap, which is enough to outweigh differences in the initial random
correlations between g ∼ N (0d, Id) and the eigenvectors {ui}i∈[d].

One could also ask: how does the power method perform when there is no gap in the {λi}i∈[d]?
In this case, a goal such as 〈û,u1〉2 ≥ 1 −∆ (as in Theorem 1) may not even be well-posed. For
example, if λ1 = λ2, then either û = u1 or û = u2 perfectly solves 1-PCA, but these vectors are
orthogonal. Nonetheless, one could hope for the output û to at least lie in the span of the “good
candidates” for an approximate top eigenvector, dodging the orthogonal small eigenspace. This
motivates our next definition for approximate PCA in the gap-free setting.

Definition 1 (Correlation 1-PCA). Let M ∈ Sd×d�0 have eigendecomposition (5), and let Γ,∆ ∈
(0, 1). Further, let ` ∈ [d] satisfy λ` > (1 − Γ)λ1 ≥ λ`+1. We say that û ∈ U1 is a (Γ,∆)-
approximate correlation-1-PCA (or, (Γ,∆)-1-cPCA) of M if∑

i∈[`]

〈û,ui〉2 ≥ 1−∆.

Intuitively, the notion of approximation in Definition 1 penalizes any mass that û puts outside
the “large eigenvectors” λ1, . . . ,λ`, but allows û to vary arbitrarily within their span. This is a
suitable generalization in the gap-free setting, treating eigenvectors that stay above the gap as
equally-acceptable solutions. As (Γ,∆)→ (0, 0), we recover that û must become a top eigenvector
of M. With this definition in hand, we give an analog to Theorem 1 in the gap-free setting.

Theorem 3 (Power method, gap-free variant). Let M ∈ Sd×d�0 have eigendecomposition (5), let
δ,∆,Γ ∈ (0, 1), and p ≥ 8

Γ log( 32d
δ∆ ). Then, with probability ≥ 1− δ, we have that û is a (Γ,∆)-1-

cPCA of M, where

û :=
Mpg

‖Mpg‖2
for g ∼ N (0d, Id) .

Proof. Throughout this proof, we follow notation in Definition 1, and further, we condition on (6)
holding, which gives the failure probability. Let

L :=
∑
i∈[`]

〈û,ui〉2 , S :=

d∑
i=`+1

〈û,ui〉2

be the correlations of û with the large and small eigenspaces of M, respectively. As in the proof
of Theorem 1, under (6), we have that for P = Mp,

d∑
i=`+1

〈Pg,ui〉2 = λp1 〈g,u1〉2
(

d∑
i=`+1

(
λpi
λp1

)(
〈g,ui〉2

〈g,u1〉2

))
≤ ∆λp1 〈g,u1〉2 .

Thus, because û ∝Mpg up to a common normalization factor,

L

S
≥ 〈û,u1〉2

S
=

〈Pg,u1〉2∑d
i=`+1 〈Pg,ui〉2

≥ 1

∆
.

Finally, because L+ S = ‖Pg‖22, we have the desired∑
i∈[`]

〈û,ui〉2 =
L

L+ S
≥ 1

1 + ∆
≥ 1−∆.

The runtime of Theorem 3 is dominated by p ≈ 1
Γ matrix-vector multiplications through M. As

alluded to in Section 1.2, Part VII, we can improve upon this runtime by using low-degree poly-
nomial approximations to Mp. This can be done explicitly (by directly applying the polynomial),
or implicitly (via the Lanczos method, i.e., Theorem 1, Part VII).
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Corollary 1. In the setting of Theorem 3, let p ≥ 8
Γ log( 64d

δ∆ ). There is an algorithm that uses

m =

√
2p log

(
96

δ∆

)
= O

(
1√
Γ

log

(
d

δ∆

))
matrix-vector multiplications through M and O(m2) additional time, and with probability ≥ 1− δ,
returns û that is a (Γ,∆)-1-cPCA of M.

Proof. We give a proof suppressing dependence on the ε parameter in Theorem 1, Part VII, and
assuming that the error bound is 2δk (as in the exact arithmetic setting of Section 5, Part VII),
rather than O(k · δk + ε). These parts of the theorem statement are used to handle issues arising
from working in finite-precision arithmetic; we defer the full proof to Theorem 18, [MMS18].

Recall from Lemma 1, Part VII, that there is a polynomial q of degree m satisfying

sup
x∈[−1,1]

|q(x)− xp| ≤ 2 exp

(
−m

2

2p

)
≤ δ∆

48
.

Thus, letting r(x) := λp1q(
x
λ1

), we have

sup
x∈[0,λ1]

|r(x)− xp| ≤ δ∆

48
λp1. (7)

Next, for notational simplicity, let n := Mpg and D := ‖n‖2, so that the output of Theorem 3 is
n
D . From the proof of Theorem 2, except with probability δ, we have that

D ≥ |〈Pg,u1〉| = λp1 |〈g,u1〉| ≥
δλp1

4
. (8)

Now, let ñ be the output of the Lanczos method (Theorem 1, Part VII) with k ← m, A ← M,
and f(x)← xp. By combining (7) and (8),

‖ñ− n‖2 = ‖ñ−Mpg‖2 ≤
δ∆

24
λp1 ≤

∆D

6
.

Therefore, letting D̃ := ‖ñ‖2, and û := ñ

D̃
be our output vector,∥∥∥∥ n

D
− ñ

D̃

∥∥∥∥
2

≤ 1

D
‖n− ñ‖2 +

∣∣∣∣ 1

D
− 1

D̃

∣∣∣∣ ‖ñ‖2 ≤ ∆

6
+

∆
6 (1 + ∆

6 )

1− ∆
6

≤ ∆

2
.

Finally, let Π :=
∑d
i=`+1 uiu

>
i be the projection matrix onto the small eigenspace of M, as in

Definition 1. Theorem 3 with our choice of p implies ‖Π( n
D )‖2 ≤ ∆

2 , so we have the desired claim:

‖Πû‖2 ≤
∥∥∥Π(û− n

D

)∥∥∥
2

+
∥∥∥Π( n

D

)∥∥∥
2
≤
∥∥∥û− n

D

∥∥∥
2

+
∆

2
≤ ∆.

Up to low-order terms, Corollary 1 improves upon Theorem 3’s runtime by a ≈ Γ−1/2 factor.
These Krylov method-based algorithms admit various extensions: for example, they generalize to
approximate k-PCA for k > 1 [MM15, AZL16], the low-order poly(m) additive runtime terms can
be removed [AZL16], and even the leading-order term of ≈ Tmv(M) · poly( 1

Γ ) can be improved (as
discussed in Section 4). The first of these extensions, i.e., the generalization to k-PCA, is fairly
straightforward to obtain by slightly modifying the proofs of Theorems 2 and 3, and Corollary 1.

There has been recent work studying the optimality of Krylov methods for PCA and low-rank
approximation. A particularly surprising result [BCW22] shows that Frobenius norm low-rank
approximation, i.e., producing a rank-k projection matrix Π̂ ∈ Sd×d�0 such that∥∥∥A−AΠ̂

∥∥∥
F
≤ (1 + ε) min

Π∈Sd×d
�0

rank(Π)=k

λ(Π)∈{0,1}d

‖A−AΠ‖F , (9)
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is achievable using only ≈ ε−1/3 matrix-vector products. This improves upon direct applications
of the Lanczos method (e.g., Corollary 1), which as shown in [MM15] use ≈ ε−1/2 matrix-vector
products to achieve a guarantee such as (9). For k = 1, [BN23] demonstrated that ≈ ε−1/3 is
the optimal matrix-vector query complexity for low-rank approximation in ‖·‖F, and ≈ ε−1/2 is
optimal in ‖·‖op; however, characterizing the landscape for general k remains open.

3 Notions of approximation
Definition 1 is not the only notion of approximate PCA commonly seen in the literature. In this
section, we introduce another standard definition, and compare it to Definition 1.

Definition 2 (Energy 1-PCA). Let M ∈ Sd×d�0 have eigendecomposition (5), and let ε ∈ (0, 1). We
say that û is an ε-approximate energy-1-PCA (or, ε-1-ePCA) of M if û ∈ U1, and

û>Mû ≥ (1− ε) max
u∈U1

u>Mu = (1− ε)λ1.

Definition 2 is somewhat more straightforward than Definition 1; it simply requires that û ap-
proximately solves the optimization problem (2) when k = 1, agnostic to the presence of a gap in
λ. Recall that in the exact case ε = 0, we have by Lemma 1 that û is a top eigenvector of M.
Moreover, guarantees for Definition 1 transfer to those for Definition 2 (and vice versa).

Lemma 2. If û is an ε-1-ePCA of M ∈ Sd×d�0 , it is a (Γ, εΓ )-1-cPCA of M for any Γ ∈ (0, 1).

Proof. Following the notation in (5) and Definition 1, let L ∈ Rd×` consist of the first ` columns of
U (i.e., the ` largest eigenvectors), and S ∈ Rd×(d−`) consist of the remaining columns. Further,
let ∆ :=

∥∥S>û
∥∥2

2
, so the claim is ∆ ≤ ε

Γ . By the matrix Hölder inequality (Eq. (12), Part VI),

(1− ε)λ1 ≤ û>Mû =
〈
ûû>,LL>MLL>

〉
+
〈
ûû>,SS>MSS>

〉
≤
∥∥L>ûû>L

∥∥
tr

∥∥S>MS
∥∥

op +
∥∥S>ûû>S

∥∥
tr

∥∥S>MS
∥∥

op

≤ (1−∆)λ1 + ∆(1− Γ)λ1 = (1−∆Γ)λ1.

The conclusion follows by rearranging and solving for ∆.

Lemma 3. If û is a (Γ,∆)-1-ePCA of M ∈ Sd×d�0 , it is a (Γ + ∆)-1-ePCA of M.

Proof. Following the notation in the proof of Lemma 2,〈
ûû>,M

〉
=
〈
ûû>,LL>MLL>

〉
+
〈
ûû>,SS>MSS>

〉
≥
〈
L>ûû>L,L>ML

〉
≥ (1−∆)(1− Γ)λ1 ≥ (1− Γ−∆)λ1.

In the last line, we used that
∥∥L>û

∥∥2

2
≥ 1 − ∆ by assumption, and that L>û is a vector in the

span of L>ML, whose smallest eigenvalue is at least (1− Γ)λ1.

We give a short application of these conversion results, showing that we can efficiently estimate
the top eigenvalue of a matrix via matrix-vector queries.

Corollary 2. In the setting of Theorem 3, let δ, ε ∈ (0, 1), and let p ≥ 16
ε log( 128d

δε ). There is an
algorithm that uses

m =

√
2p log

(
192

δε

)
= O

(
1√
ε

log

(
d

δε

))
matrix-vector multiplications through M and O(m2) additional time, and with probability ≥ 1− δ,
returns û that is a ε-1-cPCA of M. Assuming the success of this procedure, with O(Tmv(M) + d)

additional time, we can compute λ̂ satisfying λ1 ≥ λ̂ ≥ (1− ε)λ1.

Proof. For the first conclusion, we set Γ = ∆ = ε
2 in Corollary 1, and apply Lemma 3. For the

second conclusion, it is enough to output û>Mû which takes O(Tmv(M) + d) time.

6



4 Shift-and-invert preconditioning
In this section, we describe the shift-and-invert preconditioning framework for computing approx-
imate top eigenvectors of a matrix. This framework reduces top eigenvector computation to ap-
proximately solving a small number of well-conditioned linear systems. These subproblems in turn
are amenable to stochastic optimization techniques, e.g., the stochastic variance-reduced gradient
method of Section 6, Part III, that can improve the runtimes obtained in Section 2.

The basic idea of shift-and-invert is the following observation: for any λ ≥ λ1, the matrix λId−M
is positive semidefinite and has the eigenvalues {λ− λi}i∈[d] in nondecreasing order (so λ− λd is
largest). Thus, the power method applied to the shifted matrix λId −M, for judiciously chosen
λ, can be used to estimate the bottom eigenvector of M. However, we are more interested in its
application to PCA, which follows because the top eigenvector of the shift-and-inverted matrix
(λId −M)−1 is again u1. The upside is that (λId −M)−1 may be much better-conditioned than
M, and hence a few applications of it is enough to estimate u1.

Here we describe a shift-and-invert preconditioning framework for top eigenvector approximation,
adapted from [GHJ+16, AZL16]. Specifically, for some δ,Γ,∆ ∈ (0, 1) fixed throughout, our goal
is to return a (Γ,∆)-1-cPCA of M with probability ≥ 1 − δ. For simplicity, we assume we can
exactly solve linear systems. The main point of [GHJ+16, AZL16] is that the algorithm is robust to
inexact solves, and that this can be used to obtain various applications (e.g., approximate k-PCA).

Estimating the top eigenvalue. The first step is to tighly estimate λ1. We show how to obtain
λ̂ satisfying (1 + Γ

4 )λ1 ≤ λ̂ ≤ (1 + Γ
2 )λ1, assuming we start with a rough initial estimate λ̂0 that

satisfies λ1 ≤ λ̂0 ≤ Rλ1 for some parameter R. We proceed in a sequence of iterations 0 ≤ t < T
maintaining an invariant λ̂ ≥ λ1, where in each iteration t we compute a value

αt ∈
[

1

2

(
λ̂t − λ1

)
, λ̂t − λ1

]
. (10)

We then update λ̂t+1 ← λ̂t−α, which clearly preserves the invariant that λ̂t ≥ λ1 always, assuming
(10) holds. Our termination criterion is αT ≤ Γ

18 λ̂T . This implies

λ̂T ≤ λ1 + 2αT ≤ λ1 +
Γ

9
λ̂T =⇒ λ̂T ≤

1

1− Γ
9

λ1 ≤
(

1 +
Γ

6

)
λ1,

from which we can set λ̂← (1 + Γ
4 )λ̂T and obtain the desired (1 + Γ

4 )λ1 ≤ λ̂ ≤ (1 + Γ
2 )λ1.

The first key observation is that after few iterations, the stopping criterion αT ≤ Γ
18 λ̂T must be

met. Suppose this were not the case in some iteration t. Then,

λ̂t ≥ λ1 + α ≥ λ1 +
Γ

18
λ̂t ≥

(
1 +

Γ

18

)
λ1. (11)

On the other hand, in each iteration the update makes multiplicative progress towards λ1:

λ̂t+1 − λ1 = λ̂t − α− λ1 ≤
(
λ̂t − λ1

)
− 1

2

(
λ̂t − λ1

)
=

1

2

(
λ̂t − λ1

)
.

Thus, after at most T = O(log
(
R
Γ

)
) iterations, the algorithm must terminate.

The second key observation is that to produce an estimate αt, it is enough to apply Corollary 2
to the matrix Bt := (λ̂tId −M)−1, with ε ← 1

2 . This is because the top eigenvalue of Bt is
(λ̂t−λ1)−1, i.e., the inverse of what αt in (10) wants to estimate. Corollary 2 requires O(log(dRδΓ ))
(being conservative with the logarithmic factor) linear system solves in Bt. Further, we claim that
Bt is always well-conditioned before termination: by applying (11),

λ1(Bt)

λd(Bt)
≤ λ̂t

λ̂t − λ1

≤
1 + Γ

18
Γ
18

≤ 19

Γ
. (12)

The condition number bound (12) will help us bound the runtime of linear system solves later.
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Shift-and-inverse widens the gap. Next, recall that following the notation in Definition 1,
our goal in (Γ,∆)-1-cPCA is to return a vector û satisfying

∥∥S>û
∥∥2

2
≤ ∆2, where SS> =

d∑
i=`+1

uiu
>
i (13)

is the projection matrix onto the eigenvectors of M below the gap. To see why the shift-and-
invert preconditioning framework is beneficial computationally, observe that Krylov methods, e.g.,
Corollary 1, depend only mildly on the ∆ parameter, but have a polynomial dependence on Γ−1.
Hence it is in our best interest to improve the gap parameter Γ via a transformation.

Fortunately, the transformation M → B := (λ̂Id − M)−1 does exactly this, where λ̂ is our
previously-computed estimate satisfying (1 + Γ

4 )λ1 ≤ λ̂ ≤ (1 + Γ
2 )λ1. In particular,

λ`+1 (B) =
1

λ̂− λ`+1

≤ 1

λ1 − (1− Γ)λ1
=

1

Γλ1
,

while on the other hand,

λ1(B) =
1

λ̂− λ1

≥ 2

Γλ1
.

Moreover, the eigenvectors of B and M are exactly the same, and appear in the same order. Thus,
the guarantee (13) follows by computing a ( 1

2 ,∆)-1-cPCA of B. By Corollary 1, this only requires
O(log( d

δ∆ )) matrix-vector multiplications through B. By using similar logic to (12), we have

λ1(B)

λd(B)
= O

(
1

Γ

)
.

Instantiating the framework. All told, before accounting for approximation error, we have
reduced computing (Γ,∆)-1-cPCA of a matrix M to solving O(log( dR

δΓ∆ )) linear systems in matrices
of the form λ̂Id −M. Moreover, these matrices always have a condition number O( 1

Γ ).

By accounting for approximation error, [GHJ+16] show that solving linear systems with accelerated
gradient descent (cf. Theorem 2, Part V and Lemma 11, Part II) already gives a runtime of
≈ Tmv(M) · Γ−1/2. This shaves a low-order poly( 1

Γ ) term from Corollary 1’s runtime.

To obtain further runtime improvements, [GHJ+16, AZL16] focus on the case M = A>A for some
A ∈ Rn×d with rows {ai}i∈[n] ⊂ Rd. It can be shown that accelerated variance reduced methods
(introduced in Section 6, Part III) can solve a linear system in B = λ̂Id −A>A using

≈ nnz(A) +
nnz(A)

3
4 (d · sr(A))

1
4

√
Γ

(14)

time, where we hide logarithmic factors in the target error, and define the stable rank of A by

sr (A) :=
‖A‖2F
‖A‖2op

=

∑
i∈[d] λi(M)2

λ1(M)2
.

Observe that sr(A) ≤ rank(A) ≤ d, and in general, low-rank approximation is well-motivated when
sr(A) is small. In particular, when nnz(A) ≈ nd, the runtime (14) improves upon the O(nd ·Γ−1/2)
time required by accelerated gradient descent by a factor of ≈ ( n

sr(A) )1/4. By using the shift-and-
invert framework, [GHJ+16] shows that the entire cost of (Γ,∆)-1-cPCA is thus proportional to
(14) up to logarithmic factors; for a range of moderate Γ, this is input-sparsity time.

5 Deflation methods
In this section, we overview a reduction-based approach for approximately performing k-PCA
known as deflation (see, e.g., [Mac08]). This approach iteratively peels off approximate 1-PCAs to
a residual matrix via orthogonal projection. Concretely, let O : Sd×d�0 → U1 be an algorithm that
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returns an approximate top eigenvector to its input M, for an approximation notion to be defined.
Deflation methods for k-PCA initialize Π0 ← Id and i← 1, and iterate

vi ← O (Πi−1MΠi−1) , Πi ← Πi−1 − viv
>
i , for i ∈ [k]. (15)

We assume that vi ∈ Span(Πi−1) in each iteration i, which is essentially without loss of generality
when accessing Πi−1MΠi−1 via matrix-vector products. Thus, (15) returns the columns {vi}i∈[k]

of an orthonormal matrix V ∈ Uk. Further, because distinct eigenspaces are orthogonal, Lemma 1
shows that when O computes top eigenvectors exactly, the output V is also an exact solution to
the k-PCA problem (2). This is a black-box reduction from exact k-PCA to exact 1-PCA.

What is the quality of the output V ∈ Uk from deflation methods, when O is approximate? In
Section 5.1, we motivate this question via statistical settings, where polynomial dependences on
accuracy parameters are necessary. In Sections 5.2 and 5.3, we survey results of [AZL16, JKL+24],
who characterized the lossiness of deflation methods in different parameter regimes.

5.1 Statistical PCA
Consider the following statistical PCA problem: there is a distribution D over Rd, with mean
zero (i.e., Ex∼D[x] = 0d).4 Our goal is to estimate the top eigenvector of the covariance matrix,
Σ := Ex∼D[xx>], from samples {xi}i∈[n] ∼i.i.d. D. Notably, in this problem we do not have access
to Σ, and instead must use empirical estimates computed from our dataset {xi}i∈[n].

Often, in machine learning applications, statistical PCA is our actual goal, so that we can learn an
“important subspace” of D for use in downstream tasks, e.g., low-rank approximation or clustering.
The offline PCA problem we have studied thus far (i.e., computing an approximate top eigenvector
of the explicit matrix Σ̂ := 1

n

∑
i∈[n] xix

>
i ) is only solved as a proxy for statistical PCA.

To analyze this strategy, we make the following assumptions about D:∥∥∥Ex∼D

[
‖x‖22 xx>

]∥∥∥
op
≤ σ2, and ‖x‖2 ≤ R with probability 1 over x ∼ D. (16)

For intuition, suppose D = N (0d,Σ) for some Σ � Id. Then one can show that (16) holds with
σ2 = O(d), using that Gaussian distributions satisfy the following 2-to-4 hypercontractivity bound:

E 〈x,u〉4 ≤ O(1) for all ‖u‖2 = 1.

Moreover, clipping the distribution so that R ≈
√
d negligibly changes the covariance. More

generally, even for heavy-tailed hypercontractive distributions where the latter bound in (16) fails
and we only have the former, the bias of clipping to enforce ‖x‖2 ≤ R can usually be directly
bounded, see e.g., Lemma 14, [JKL+24]. In this section, we will simply assume (16) holds.

Our primary tool used to compare the empirical and true covariances, Σ̂ and Σ, is a variant of an
eigenspace perturbation result by [Wed72], which we adapt from Lemma B.3, [AZL16]. Intuitively,
it says that if we lightly perturb a matrix M, then eigenspaces of M that originally had a gap
between them still remain mostly-uncorrelated after the perturbation.

Lemma 4 (Gap-free Wedin’s theorem). Let ε, λ, τ > 0, and let M, M̂ ∈ Sd×d�0 have ‖M− M̂‖op ≤
ε. Let L,S have eigenvectors of M with eigenvalues > λ and ≤ λ as columns respectively, so
LL>+ SS> = Id. Similarly, let L̂, Ŝ have eigenvectors of M̂ with eigenvalues > λ+ τ and ≤ λ+ τ
as columns respectively. Then, ∥∥∥S>L̂

∥∥∥
op
≤ ε

τ
.

Proof. For convenience, let us write the entire eigendecompositions of M, M̂, as

M = LΛLL> + SΛSS>, M̂ = L̂Λ̂LL̂> + ŜΛ̂SŜ>,

4This zero mean assumption is without loss of generality in the context of statistical PCA. Otherwise, we can
define a modified distribution D′ where a draw from D′ takes x,x′ ∼i.i.d. D and returns x−x′. Then, D′ has mean
0d, and has the same covariance matrix as D up to scaling, so we can solve PCA on D′ instead.
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so ‖ΛS‖op ≤ λ, and ‖Λ̂
−1

L ‖op ≤ 1
λ+τ . Letting R := M− M̂, we have by orthogonality of S,L that

ΛSS> = S>M = S>
(
M̂ + R

)
=⇒ ΛSS>L̂ = S>M̂>L̂ + S>RL̂ = S>L̂Λ̂L + S>RL̂

=⇒ ΛSS>L̂Λ̂
−1

L = S>L̂ + S>RL̂Λ̂
−1

L .

Thus, by taking operator norms of both sides,

λ

λ+ τ

∥∥∥S>L̂
∥∥∥

op
≥ ‖ΛS‖op

∥∥∥S>L̂
∥∥∥

op

∥∥∥Λ̂−1

L

∥∥∥
op

≥
∥∥∥S>L̂

∥∥∥
op
−
∥∥∥S>RL̂

∥∥∥
op

∥∥∥Λ̂−1

L

∥∥∥
op
≥
∥∥∥S>L̂

∥∥∥
op
− ε

λ+ τ
,

and rearranging yields the bound ‖S>L̂‖op ≤ ε
τ as desired.

We are now ready to analyze a simple strategy for statistical PCA: take enough i.i.d. samples from
D, and apply Theorem 3 (or Corollary 1) to the empirical covariance.

Proposition 1. Let D be a distribution on Rd with mean 0d and covariance Σ, assume that D
satisfies (16), and let δ,Γ,∆ ∈ (0, 1). Given n samples {xi}i∈[n] ∼i.i.d. D, for

n ≥
(

64σ2

λ1(Σ)2∆Γ2
+

32R2

λ1(Σ)
√

∆Γ

)
log

(
2d

δ

)
,

any (Γ
6 ,

∆
4 )-1-cPCA for Σ̂ := 1

n

∑
i∈[n] xix

>
i is a (Γ,∆)-1-cPCA for Σ with probability ≥ 1− δ.

Proof. Our first goal is to bound ‖Σ− Σ̂‖op, so we may apply Lemma 4. For all i ∈ [n], define a
random matrix Zi := 1

n (xix
>
i −Σ), so that Σ̂ =

∑
i∈[n] Zi. Moreover, note that for all i ∈ [n],∥∥EZ2

i

∥∥
op =

1

n2

∥∥E
[
xix
>
i xix

>
i

]
−Σ2

∥∥
op

≤ 1

n2

∥∥E
[
xix
>
i xix

>
i

]∥∥
op =

1

n2

∥∥∥E
[
‖xi‖22 xix

>
i

]∥∥∥
op
≤ σ2

n2
,

using the first bound in (16). The first line also used that E[xix
>
i xix

>
i ] � Σ2, because

E
[
u>xix

>
i xix

>
i u
]

= E
[∥∥xix>i u

∥∥2

2

]
≥
∥∥E
[
xix
>
i u
]∥∥2

2
= u>Σ2u for all u ∈ Rd,

by convexity of ‖·‖22 applied to the random vector xix
>
i u. Similarly,

‖Zi‖op =
1

n

∥∥xix>i −Σ
∥∥

op ≤
1

n

∥∥xix>i ∥∥op +
1

n
‖Σ‖op ≤

2R2

n
with probability 1,

by the second bound in (16), and since ‖Σ‖op ≤ R2 by convexity of ‖·‖op. We can now apply the
matrix Bernstein inequality (Theorem 11, Part VI) with Z← Σ, c← 2R2

n , and σ2 ← σ2

n to obtain

Pr

[∥∥∥Σ̂−Σ
∥∥∥

op
≥ t
]
≤ 2d exp

(
−min

(
nt2

4σ2
,
nt

8R2

))
≤ δ, for t =

√
∆Γλ1(Σ)

4
.

Assume that the event above does not hold. By the gap-free Wedin’s theorem (Lemma 4) applied
with M← Σ, M̂← Σ̂, λ← (1− Γ)λ1(Σ), and τ ← Γ

2λ1(Σ), we obtain∥∥∥L̂>S
∥∥∥

op
≤ 2

Γλ1(Σ)
·
√

∆Γλ1(Σ)

4
=

1

2

√
∆.

Here, we followed notation in Lemma 4, so S spans the eigenspace of M below (1− Γ)λ1(Σ), and
L̂ spans the eigenspace of M̂ above (1− Γ

2 )λ1(Σ). Furthermore, note that λ1(Σ̂) ≥ (1− Γ
4 )λ1(Σ),

and (1− Γ
6 )(1− Γ

4 )λ1(Σ) ≥ (1− Γ
2 )λ1(Σ). Thus if û is a (Γ

6 ,
∆
4 )-1-cPCA for Σ̂, it must satisfy∥∥∥Ŝ>û

∥∥∥2

2
≤ ∆

4
,
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where Ŝ is the complement to L̂ as in Lemma 4. Combining the above two displays, we have the
desired claim that û is a (Γ,∆)-cPCA, because∥∥S>û

∥∥2

2
≤
(∥∥∥S>L̂L̂>û

∥∥∥
2

+
∥∥∥S>ŜŜ>û

∥∥∥
2

)2

≤
(∥∥∥S>L̂

∥∥∥
op

+
∥∥∥Ŝ>û

∥∥∥
2

)2

≤ ∆2.

Let us give an example to understand Proposition 1. As discussed earlier, after a mild amount of
clipping, Gaussian distributions D satisfy σ2

λ1(Σ)2 ,
R2

λ1(Σ) . d. Thus, Proposition 1 states that

n ≈ d log(d)

∆Γ2
(17)

samples are needed for the empirical covariance to serve as a good proxy in statistical PCA.

One interesting qualitative aspect of this bound is its polynomial dependence on both Γ−1 and
∆−1. This is in contrast to the offline setting (e.g., Theorem 3, Corollary 1), which depended
on log( 1

∆ ). In fact, it is known that these polynomial dependences are necessary in the statistical
setting (Theorem 3.1, [VL13]), motivating the question of fine-grained guarantees for how the error
parameters Γ,∆ blow up in deflation methods for cPCA.

Indeed, the design of approximate 1-PCA algorithms, let alone k-PCA algorithms, becomes even
more complicated when additional constraints are added (see [JKL+24] for a list of well-studied
statistical PCA problems, including streaming, dependent sample, robust, and private variants).
Thus, deflation methods are attractive to algorithm designers as a way to focus on the least
complicated 1-PCA case, presuming we can bound their degradation in quality.

5.2 Black-box ePCA
The good news is that if we shift our notion to approximation to ePCA (Definition 2), deflation
methods result in no blowup of the approximation parameter. Concretely, following the notation
in (2), say that V ∈ Uk is an ε-k-ePCA of M, if〈

VV>,M
〉
≥ (1− ε) max

U∈Uk

〈
UU>,M

〉
.

Then we have the following black-box reduction from k-ePCA to 1-ePCA.

Proposition 2. Let M ∈ Sd×d�0 , and for any projection matrix Π ∈ Sd×d�0 , let O be an oracle that
takes input ΠMΠ and returns v, an ε-1-ePCA to ΠMΠ satisfying v ∈ Span(Π). Further, let
V ∈ Uk concatenate {vi}i∈[k] resulting from iterating (15). Then V is an ε-k-ePCA to M.

Proof. We proceed by induction on i ∈ [k]. Let Vi denote the horizontal concatenation of the first
i calls to O, so that Πi = Id −ViV

>
i . The inductive hypothesis tells us〈

ViV
>
i ,M

〉
≥ (1− ε) max

U∈Ui

〈
UU>,M

〉
=
∑
j∈[i]

λj(M),

where we applied Lemma 1 to compute the right-hand side. This then implies

Tr
(
V>i+1MVi+1

)
= Tr

(
V>i MVi

)
+ v>i+1Mvi+1

≥ (1− ε)

∑
j∈[i]

λj(M)

+ v>i+1Mvi+1

≥ (1− ε)

∑
j∈[i]

λj(M)

+ (1− ε) ‖ΠiMΠi‖op

≥ (1− ε)

 ∑
j∈[i+1]

λj(M)

 .

The second line used the inductive hypothesis on Vi, the third line used the 1-ePCA guarantee on
vi+1, and the last line applied the Cauchy interlacing theorem (Corollary 4, Part VI).
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5.3 Black-box cPCA
The story gets murkier when it comes to deflation methods for cPCA. In this discussion, let
γ, δ ∈ (0, 1), and suppose that O in (2) returns a (γ, δ)-1-cPCA to its input. Further, define
κk := λ1

λk
, where M has eigendecomposition (5). Our goal is to understand when the deflation

method (2) returns a set of vectors {vi}i∈[k] that is a (Γ,∆)-k-cPCA, and bound how large Γ,∆
are as a function of the original parameters γ, δ, as well as potentially k, κk.

The baseline is to use Proposition 2 alongside our conversion results, Lemmas 2 and 3. In fact,
one can show a variant of Lemma 2 that says any ε-k-ePCA of M is also an ( εkκk

Γ ,Γ)-k-cPCA of
M (Lemma 1, [JKL+24]). Directly plugging this into Proposition 2 implies it is enough to take
ε = Γ∆

kκk
, so Lemma 3 shows we can take γ = δ = O( Γ∆

kκk
) in our 1-cPCA oracle O.

In the statistical setting with i.i.d. Gaussian data, putting these parameters into (17) results in

n ≈ d log(d) · k
3κ3
k

Γ3∆3

samples required to solve 1-cPCA to the level needed for deflation to yield a (Γ,∆)-k-cPCA.
Improving upon this in some parameter regimes, [AZL16] showed that it is enough to take

γ =
Γ

2
, δ = Θ

(
Γ2∆2

k4κ2
k

)
,

for (15) to give a (Γ,∆)-k-cPCA, which in the case of (17) needs ≈ d log(d) · k
4κ2

k

∆2Γ4 samples for
O. The upshot of the [AZL16] result is that it works very well in the offline cPCA setting, where
polylog( 1

∆ ) rates are possible given an explicit matrix (Theorem 3, Corollary 1). Thus, the blowup
of δ → ∆ in their reduction is less of an issue, and γ ≈ Γ is the salient feature.

Returning to the statistical setting, it is known that the optimal sample complexity of solving
(Γ,∆)-k-cPCA in one shot (rather than via deflation methods) scales as ≈ κk

Γ2∆ [VL13], which is
tight up to the dependence on k [AL17]. This matches the dependences of the 1-cPCA case in
terms of Γ,∆. Thus, ambitiously, could we hope for lossless or near-lossless cPCA reductions,
more in line with what we showed in Proposition 2 (where ε did not blow up at all)?

This question was studied recently by [JKL+24], who showed the answer is actually no: if Γ .
κk
√

∆, deflation methods fail to give a lossless cPCA reduction, even if k = 2 and d = 3. This shows
a qualitative separation between our approximation notions in Definitions 1 and 2. More generally,
assuming that we are in the opposite regime Γ & κk

√
∆, a lossless reduction actually is possible

for any constant k (Theorem 2, [JKL+24]). Unfortunately, the parameters in [JKL+24] reduction
lose a kΘ(log k) factor, and it is an open problem to improve the k dependence to polynomial.
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Source material
This lecture is based on the author’s own experience working in the field.
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